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ABSTRACT

The short answer to the question posed in the title is that it depends on the frame of reference chosen to

describe the motions. In the inertial limit, the frequency in a rotating frame of reference corresponds to the

rotation rate of the inertial current vectors relative to that frame. When described in a reference frame

rotating with a geostrophic flow having a relative vertical vorticity z, inertial oscillations have a frequency f 1 z,

equal to twice the fluid’s rotation rate around the local vertical axis. From a nonrotating frame of reference,

one would measure only half this frequency; the other half arises from describing inertial motions in a ref-

erence frame rotating with the background flow. However, when described in a reference frame rotating with

Earth, hence rotating at 2z/2 relative to the geostrophic frame, inertial oscillations have a frequency reduced

to f 1 z/2.

1. Introduction

In his often-cited paper on the effects of geostrophic

flow on near-inertial internal wave propagation, Kunze

(1985, hereafter K85) showed that the geostrophic vor-

ticity z shifts the lower bound of the internal wave band

from the inertial frequency f to an effective inertial fre-

quency feff 5 f 1 z/2, a result established earlier, albeit

with more restrictive assumptions (Fomin 1973; Mooers

1975; Weller 1982). The intuitive explanation for this

result is that ‘‘a wave experiences the fluid’s as well as

Earth’s rotation’’ (K85). However, because Earth’s ro-

tation rate V gives rise to inertial oscillations with fre-

quency f 5 2V sinu (where u is latitude), which is twice

the rotation rate around the local vertical direction, one

could naively expect geostrophic vorticity to shift the

frequency by z, which is twice the rotation rate of fluid

parcels relative to Earth. K85 argued that the z/2 shift

results from the use of rectilinear instead of polar or

spherical coordinates in his treatment of the problem.

Kunze et al. (1995, hereafter K95) and Kunze and Boss

(1998, hereafter KB98) used polar coordinates to treat

the somewhat different problem of near-inertial waves

trapped within the core of an axisymmetric vortex and

found that the lower bound of the trapped internal

wave band was shifted to f 1 z, seemingly confirming

the explanation given by K85.

We find this explanation unsatisfactory, because the

frequency shift of near-inertial waves in geostrophic

flow should not depend on the type of coordinates used

to solve the problem. The purpose of this note is to

demonstrate that the fundamental difference between

the results obtained by K85, K95, and KB98 arises in fact

from the different rotation rates of the frames of refer-

ence chosen to describe the motions. Durran (1993)

showed that, although inertial oscillations on the North

Pole f plane have a frequency f when described in a

reference frame rotating with Earth, they have a fre-

quency f/2 when described in an inertial (nonrotating)

reference frame. We extend in section 2 the approach of

Durran (1993) to include a solid-body rotating vortex

centered on the North Pole. This provides the simplest

conceptual framework to understand the fundamental

difference between the results obtained by K85, K95,

and KB98, as discussed in section 3. Although it is more

Corresponding author address: Cédric Chavanne, Institut des

Sciences de la Mer de Rimouski, Université du Québec à Ri-
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difficult to visualize inertial oscillations in alternative

reference frames for an f plane at an arbitrary latitude

than for the polar plane, there is no difference in the

physics or the mathematics. An extension to arbitrary

background flows is given in the appendix.

2. Inertial oscillations in solid-body rotating flow on
the polar f plane

Let us investigate inertial oscillations on the North

Pole f plane, in the presence of a mean solid-body ro-

tating vortex centered on the North Pole, with constant

relative vertical vorticity z. We use three different frames

of reference to describe the motions: (i) an inertial (i.e.,

nonrotating) frame, (ii) a frame rotating with the vortex

flow, and (iii) a frame rotating with Earth.

a. Inertial reference frame

A fluid parcel’s motion in an inertial reference frame I

is governed by Newton’s second law, which, for a fric-

tionless fluid, takes the form

d2x

dt2

 !
I

5 Fg 1 Fp, (1)

where (d/dt)I is the material derivative in I (following the

fluid parcel’s motion relative to I), x is the position of the

fluid parcel relative to the North Pole, Fg is the gravita-

tional force per unit mass, Fp 5 2r21
0 $p is the pressure

gradient force per unit mass, r0 is density (assumed con-

stant here), and p is pressure (e.g., Gill 1982, p. 72).

In the absence of any motion relative to Earth other

than the solid-body rotating flow, the fluid is in coun-

terclockwise solid-body rotation about the North Pole,

with an absolute angular velocity Va 5 [( f 1 z)/2]k,

where f 5 2V is the Coriolis parameter at 908N (assumed

greater than jzj) and k is the vertical unit vector. The

gravitational and pressure gradient forces therefore com-

bine to yield the required centripetal acceleration,

d2x

dt2

 !
I

5 2
f 1 z

2

� �2

x. (2)

The free surface of the fluid is warped relative to the

geoid, causing the familiar horizontal (i.e., along the

geoid) pressure gradients responsible for geostrophic

flows and allowing fluid parcels to rotate at a rate dif-

ferent from Earth’s (Fig. 1).

Suppose the circular motion of a fluid parcel around the

North Pole described above is momentarily disrupted

(e.g., by a sporadic wind event for a surface water par-

cel) but the force having caused the disruption sub-

sequently vanishes. Assume the impulsive forcing is of

large horizontal extent, so that subsequent horizontal

pressure and velocity gradients are negligible. After the

disruption, the fluid parcel’s inertial acceleration is again

given by (2), and the new motion of the fluid parcel is

a counterclockwise ellipse with frequency (f 1 z)/2. This

is the motion of inertial oscillations in solid-body rotating

flow, as seen by an observer fixed in I.

b. Reference frame rotating with the vortex flow

A natural frame of reference to describe inertial os-

cillations in the presence of a mean solid-body rotating

flow is a frame F rotating with the mean flow at a con-

stant angular velocity Va relative to I. Given any two

frames of reference, A and B, where the angular velocity

of B relative to A is v, the rates of change of any vector

Q in A and B are related by

dQ

dt

� �
A

5
dQ

dt

� �
B

1 v 3 Q. (3)

Letting A be the inertial frame I and B the rotating

frame F and applying (3) first to the position vector, Q 5 x,

FIG. 1. Balance of forces for a frictionless homogeneous fluid

entirely covering the smooth surface of a hypothetical Earth: if the

fluid is at rest with respect to Earth (thick curve and arrows), the

free surface corresponds to the geoid (shown with greatly exag-

gerated eccentricity), whereas, if the fluid rotates more rapidly than

Earth (thin curve and arrows)—that is, in the presence of a cyclonic

vortex in solid-body rotation centered on the North Pole—the free

surface is warped, causing pressure to decrease at the North Pole

(indicated by L) and to increase at the equator (indicated by H).

The fluid velocity increases from zero at the North Pole to a

maximum value at the equator, indicated by the arrows into the

page. The centripetal acceleration acp equals the sum of the gra-

vitational force Fg and the pressure gradient force Fp. For sim-

plicity, Fg is shown pointing toward the center of Earth, although

in reality it is slightly deviated by the equatorial bulge. The bal-

ance of forces is shown at a latitude far from 908N for clarity, with

the differences between the thick and thin arrows getting smaller

as the North Pole is approached but remaining qualitatively

similar.
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and then to the velocity vector in I, Q 5 (dx/dt)I, yields the

familiar expression

d2x

dt2

 !
I

5
d2x

dt2

 !
F

1 2Va 3 VF 1 Va 3 (Va 3 x), (4)

where VF 5 (dx/dt)F is the velocity of inertial oscilla-

tions in F. Combining (4) and (2) yields

dVF

dt

� �
F

1 ( f 1 z)k 3 VF 5 0. (5)

Here, (d/dt)F can be considered as the material derivative

or the Eulerian derivative in F, because in the inertial

limit the velocity field has no horizontal gradient.

Equation (5) is similar to that satisfied by inertial os-

cillations in a background flow at rest with respect to

Earth, except that f is replaced by f 1 z here. The mo-

tions of fluid parcels are clockwise circles, with fre-

quency f 1 z corresponding to the angular frequency of

the velocity vector at a fixed point in F or following the

fluid parcels. This is the motion of inertial oscillations in

solid-body rotating flow, as seen by an observer fixed in

F. The frequency measured in F is twice that measured

in I and has the opposite sign (clockwise versus coun-

terclockwise), because an observer fixed in F follows

a circle, whereas a fluid parcel follows an ellipse, both

at the same frequency relative to I. This is illustrated for

z 5 0 in Fig. 2, in Durran (1993, Fig. 3), and in Stommel

and Moore (1989, Fig. 3.1).

c. Reference frame rotating with Earth

Because we observe flows relative to Earth, we usually

describe inertial oscillations in a reference frame E,

rotating with Earth. At a given location in E, the velocity

is the vortex flow, which is a function of position but not

of time, plus VF, which is a function of time but not of

position. Therefore, the measured inertial oscillation is

still just VF but viewed from the new reference frame E.

As E rotates at 2z/2 relative to F, the application of (3)

with Q 5 VF yields

dVF

dt

� �
F

5
dVF

dt

� �
E

2
z

2
k 3 VF. (6)

Combining (6) and (5) yields

dVF

dt

� �
E

1 f 1
z

2

� �
k 3 VF 5 0. (7)

Here again, (d/dt)E can be considered in the inertial limit

as the material derivative or the Eulerian derivative in

E. The trajectories of fluid parcels are clockwise circles,

with frequency f 1 z/2 corresponding to the angular

frequency of the velocity vector at a fixed point in E or

following the fluid parcels, superimposed on the mean

vortex flow. This is the motion of inertial oscillations in

the presence of solid-body rotating flow, as seen by an

observer fixed in E. The frequency measured in E is z/2

less than that measured in F, because E rotates at 2z/2

relative to F, and the frequencies correspond to the

angular frequencies of the velocity vector relative to the

rotating frames of reference.

3. Discussion

The main result of the previous section is that the

trajectory and frequency of inertial motions depend on

the rotation rate of the frame of reference chosen to

describe them. It does not depend on the type of co-

ordinates (e.g., Cartesian versus polar), as shown by our

exclusive use of vectorial notation in section 2. There are

three key points to understand the different frequencies

measured in the three different frames of reference

considered. First, inertial motions on the polar f plane in

the presence of a solid-body rotating vortex centered on

the North Pole are counterclockwise ellipses with fre-

quency ( f 1 z)/2 in an inertial reference frame, due to

the warping (relative to the geoid) of the free surface

FIG. 2. An illustration of inertial oscillation on the North Pole

(labeled O) f plane. The thick black curve and bullets represent the

elliptical counterclockwise trajectory and the positions of a fluid

parcel undergoing inertial oscillation at particular times during half

a day, as seen by an observer fixed in an inertial (nonrotating)

reference frame. To this observer, the rotation rate of the fluid

parcel is equal to Earth’s rotation rate. The thick gray curve and

bullets represent the circular counterclockwise trajectory and the

positions of an observer fixed in the rotating f plane at the same

particular times. To this observer, the fluid parcel’s motion appears

as a circular clockwise trajectory (thin black curves), with twice

Earth’s rotation rate: the fluid parcel completes a full circle around

the rotating observer during half a day.
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associated with the vortex flow, which causes fluid par-

cels to rotate at a rate different from Earth’s (Fig. 1).

This is the fluid’s rotation ‘‘felt’’ by the inertial motions.

Second, inertial motions appear as clockwise circles with

frequency f 1 z in a reference frame rotating with the

vortex flow at angular velocity ( f 1 z)/2, because a ro-

tating observer follows a counterclockwise circle at the

same frequency as the fluid parcel’s relative to I. This is

analogous to the case of inertial oscillations in a back-

ground flow at rest with respect to Earth (Fig. 2). Third,

noting that, in the inertial limit, the frequency in the

rotating reference frame corresponds to the rotation

rate of the inertial current vectors relative to that frame

[Eq. (5)], it is straightforward to obtain a frequency of

f 1 z/2 in a reference frame rotating with Earth at

2z/2 relative to the reference frame rotating with the

vortex flow.

Following Durran (1993), we restricted the theoretical

treatment of section 2 to the North Pole f plane for

simplicity. The results remain unchanged for f planes at

any other latitude but are more difficult to visualize. The

reference frame with zero angular velocity component

in the local vertical direction is not an inertial frame,

because it has a northward (i.e., horizontal) angular ve-

locity component of V cosu. Insofar as all motions remain

horizontal, however, this horizontal component of an-

gular velocity has no effect. Restricting the discussion to f

planes also neglects the important effects of the meridi-

onal variations of f on the propagation of near-inertial

oscillations (e.g., Garrett 2001), which are beyond the

scope of this short note. Indeed, we have restrained for

simplicity our treatment to the inertial limit, in which

inertial oscillations do not propagate.

The case of a solid-body rotating vortex provides the

simplest conceptual framework to investigate the effect

of background flow on inertial oscillations. This is a very

particular case, however, because the strain rate of the

flow is zero. Inertial oscillations in an arbitrary back-

ground flow have their frequency affected by both the

background vorticity and strain rate (see appendix): the

effect of the background vorticity on the inertial fre-

quency is O(Ro), whereas the effect of the background

strain rate isO(Ro2), where Ro is the Rossby number of

the background flow. Therefore, the results of section 2

remain approximately valid for arbitrary geostrophic

flows (Ro� 1).

K95 and KB98 described near-inertial motions trapped

within the solid-body rotating core of an axisymmetric

vortex and obtained an effective inertial frequency of f 1 z

‘‘in a mean Lagrangian frame following the core’s

rotation’’ (K95)—that is, a reference frame rotating with

the vortex flow—consistent with the results of section 2b.

In contrast, K85 described near-inertial motions in

rectilinear geostrophic flow and obtained an effective

inertial frequency of f 1 z/2 in a mean Lagrangian frame

translating, but not rotating, with the geostrophic flow—

that is, a reference frame rotating with Earth only—

consistent with the results of section 2c. This consistency

is expected because the inertial limit we have considered

here is a nonsingular limit of the more general internal

wave propagation problem considered by K85, K95, and

KB98. When observations are analyzed in a reference

frame rotating with Earth, K85’s treatment is relevant.

For example, Elipot et al. (2010) tracked surface drifters

through geostrophic currents inferred from satellite al-

timetry in the global ocean and found a frequency shift of

;0.4z, closer to K85’s result than to K95’s and KB98’s.
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APPENDIX

Inertial Oscillations in Arbitrary Background Flow

Inertial oscillations u in a mean background flow u

and in the Earth reference frame are governed by

›u

›t
1 u � $u 1 f k 3 u 5 0 (A1)

in the linear (small amplitude) and inertial (horizontally

uniform u) limit. Let us solve the problem on the f plane

using Cartesian coordinates. Defining the vorticity

z 5 ›y/›x 2 ›u/›y, the divergence d 5 ›u/›x 1 ›y/›y, the

shear strain rate ss 5 ›y/›x 1 ›u/›y, and the normal

strain rate sn 5 ›u/›x 2 ›y/›y, (A1) can be expressed as

›u

›t
1

d 1 sn

2

� �
u 1

�
ss

2
2 f 1

z

2

� ��
y 5 0 and (A2)

›y

›t
1

�
ss

2
1 f 1

z

2

� ��
u1

d 2 sn

2

� �
y 5 0. (A3)

Looking for a solution of the form u 5 u0 exp(ivt) yields

the dispersion relation

v 5 i
d

2
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 1

z

2

� �2

2
s2

4

s
, (A4)
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where s 5 (s2
n1s2

s )1/2 is the total strain rate. The solu-

tion is oscillatory when the strain rate is not too large,

s2 , 4( f 1 z/2)2, and the frequency of inertial oscilla-

tions is affected by the background vorticity and strain

rate, whereas the background divergence causes expo-

nential growth or decay of the solution.

Let (z, s) 5 (U/L)(z*, s*), where U and L are typical

velocity and horizontal scales characterizing the back-

ground flow. The second term on the rhs of (A4) be-

comes

feff 5 f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 Ro z* 1 Ro2 z*2 2 s*2

4

� �s
, (A5)

where Ro 5 U/fL is the Rossby number of the back-

ground flow. The strain rate only affects the frequency to

O(Ro2), whereas the vorticity affects the frequency to

O Ro)ð . For geostrophic flows (Ro � 1), (A5) approxi-

mates to feff 5 f 1 z/2. The expression for the effective

inertial frequency given in (A5) differs from those typ-

ically given in the literature (e.g., Fomin 1973; Weller

1982; Kunze 1985; with the typographical correction

given by Jones 2005) by emphasizing the fact that the

inertial frequency is only affected by the background

vorticity and strain rate. Fomin (1973) had the square of

the background flow divergence explicitly appearing in

his expression for the effective inertial frequency [his

Eq. (15)] and concluded that ‘‘the divergence always

lowers the frequency of the inertial velocity oscilla-

tions.’’ It turns out that the O(Ro2) terms in his ex-

pression can be rewritten as the so-called Okubo–Weiss

parameter appearing in (A5), which only involves vor-

ticity and strain rate, not divergence.
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