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1. Introduction

The analysis of long time series of satellite altimeter observations has demonstrated that the
barotropic or surface tide dissipates roughly 3.5 TW of energy, of which roughly two-thirds is lost to
frictional processes in the shallow coastal ocean (Egbert and Ray, 2000, 2001). The remaining energy
dissipation occurs in the open ocean where it may play an important role in maintaining and regulat-
ing the oceans’ meridional overturning circulation (Munk and Wunsch, 1998; Simmons et al., 2004b).
Additional evidence for the global importance of deep ocean tidal dissipation is found in tidal model
studies which incorporate loss of barotropic energy either by parameterization (Jayne and St. Laurent,
2001) or by direct simulation of baroclinic tidal generation at rough topography (Arbic et al., 2004).

The extent to which tidal dissipation contributes to the meridional overturning circulation depends
largely on where tidal mixing and the associated vertical buoyancy flux occurs. In the deep ocean
it has been assumed that the vast majority of energy loss from the surface tide occurs where the
barotropic tide flows across the bathymetric gradient, periodically forcing the isopycnals to deviate
from the horizontal (Baines, 1982). Near a large-scale geomorphic feature like the Hawaiian Ridge, this
conversion process extracts roughly 10% of the energy from the propagating barotropic tide (Zaron
and Egbert, 20064, 2007), and results in the generation of a baroclinic or internal tide. A portion of this
energy is lost to turbulence via rapid nonlinear interactions near the conversion site (Klymak et al.,
2008; Levine and Boyd, 2006), with the remainder propagating as a phase-coherent low-mode internal
tide, which observations indicate can propagate for 1000’s of kilometers in the deep ocean (Ray and
Mitchum, 1996, 1997; Alford, 2003). The precise partitioning of energy into locally dissipated and
propagating components depends in detail on the structure of the bathymetric features, with smaller-
scale elements, such as are found on the mid-Atlantic Ridge, leading to more high-mode generation
and local mixing (St. Laurent and Nash, 2004). For an overview of the literature, the reader is referred
to the recent review by Garrett and Kunze (2007).

Our goal here is to partition the energy lost from the surface tide into locally dissipated and prop-
agating components for a relatively well-studied site, namely, Kauai Channel, between the islands of
Oahu and Kauai in the Hawaiian Archipelago. This location was originally identified as a generation site
of the baroclinic tide from observations (Ray and Mitchum, 1997) and modeling studies (Merrifield
and Holloway, 2002), and a number of studies from the Hawaii Ocean Mixing Experiment (HOME)
were focussed here (Rudnick et al., 2003; Lee et al., 2006; Carter and Gregg, 2006; Nash et al., 2006).

No single observation or set of observations contains enough information to unambiguously close
the tidal energy budget in the region enclosing Kauai Channel. Measurements indicate that turbulence
and mixing is spatially variable and depends strongly on the phase of the spring-neap cycle (Carter and
Gregg, 2006; Klymak et al., 2006). Other observations have shown that the structure of the propagating
tide is spatially complex (Lee et al., 2006; Nash et al., 2006), with a three-dimensional structure result-
ing from the orientation of the barotropic tidal currents and the local bathymetry. The studies cited
have used numerical models to assist in interpreting and quantifying tidal processes in the Channel;
however, there is considerable challenge in accomplishing this on even a local scale. First, barotropic
to baroclinic conversion is most efficient over steep slopes, so very high-resolution numerical models
and bathymetric data are necessary (Zaron and Egbert, 2006b; Carter et al., 2008). Second, the influ-
ence of the subgrid-scale turbulence parameterizations on the resolved scales is poorly understood,
and it is not known to what degree the extant turbulence closures represent observed processes such
as large-scale internal wave breaking (Legg and Huijts, 2006). Third, the impact of three-dimensional
non-tidal variations in buoyancy and velocity, e.g., the mesoscale and sub-mesoscale, are difficult to
incorporate in models since these fields are normally unknown at the scale of the internal tide.

Anatural way to address these challenges is to consider data assimilative modeling, rather than con-
ventional prognostic modeling. This approach uses a dynamical model which approximately governs
the tide together with a description for the amplitude and correlation structure of the acknowledged
errors in the model. Using standard methods of variational data assimilation (Bennett, 2002), tidal
fields are found which minimize a weighted sum of squared model error and data errors, where the
weights are derived from the hypothesized errors in each. The results of the data assimilative approach
are, (1) improved estimates of the tidal fields and estimates of errors in the model, and (2) a test of the
validity of the hypothesized model and its assumed errors.
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Here we use a data-assimilating primitive equations model to infer the complete three-dimensional
tidal fields from surface velocity data obtained with two high-frequency radio (HFR) Doppler current
meters. The HFRs, their directional (beam-forming) capabilities and other characteristics are described
in detail in Chavanne et al. (submitted for publication-a). These data are unique because they permit an
examination of tidal processes from synoptic data at a site of intense baroclinic energy conversion, and
they are one of the few kinds of data with both the temporal and spatial resolution to simultaneously
observe tidal and non-tidal (mesoscale) phenomena. The numerical model, PEZ-HAT, utilizes simpli-
fied dynamics in which non-hydrostatic motions are filtered out and the nonlinearities are neglected,
except in-so-far as the turbulence has been parameterized by down-gradient transport of buoyancy
and momentum. The temporal structure of the model is also reduced by considering just the dom-
inant semidiurnal tidal constituent M,. We take this simplified approach because of the pragmatic
difficulties associated with modeling the complete, multi-constituent, tidal fields and the mesoscale
simultaneously.

Our objective is to estimate the three-dimensional tidal fields during the two 3-month periods
between August 2002 and May 2003 when both HFRs were functioning. We find that the observed
tidal velocities are smaller than those from the prior (data-less) model, and there is less horizontal
shear in the observations compared to the model. In contrast, the data assimilative model is able to
nearly interpolate the observations, assuming a plausible scaling for the tidal-mesoscale interactions.
The inferred interaction is in the sense of a reduction of tidal energy radiated to the deep ocean, but the
magnitude of the effect is small compared to uncertainty in the model. The HFR data provide evidence
to support of the hypothesis that the generation of the internal tide is influenced by the wind-driven
mesoscale circulation. The present analysis does not permit us to distinguish the differing contributions
of turbulence vs. tidal-mesoscale interactions. A more complete analysis must consider the mesoscale
separately, a problem which is left for future research.

2. Data and methods
2.1. Data

Two high frequency radio (HFR) transceivers measured ocean surface velocities for 9 months
(August 30, 2002 to May 22, 2003) in the Kauai Channel, a narrow region between O’ahu Island and
Kauai Island in the Hawaiian Archapelago in the North Pacific Ocean. Each HFR consisted of transmit
antennas, an array of 16 receive antennas, and the signal processing equipment necessary for beam-
forming. Ocean surface currents were inferred from the Doppler shift of the Bragg scattering by ocean
surface waves (Gurgel et al., 1999). The systems were operated with a nominal range of approximately
75 km, a range resolution of 1.5 km, and an angular resolution of 7°. The reader is referred to Chavanne
et al. (submitted for publication-a) for a more detailed description of the HFR instrumentation and
data.

The HFR transceivers were located at Ka’ena Point (KP) and at Ko’Olina Harbor (KO). The antenna
array at KP was inadvertently jammed by a Navy transmission from December 8, 2002 to February 19,
2003, during which time no usable data were recovered from this array. Data used in this study come
from two 3-month periods, P1: August 30, 2002-December 7, 2002, and P2: February 20, 2003-May
22,2003, when both of the antenna arrays were functioning. During these two periods time series of
hourly averaged radial velocity at each point in the observational arrays were harmonically analyzed
to extract the complex amplitude of the dominant semidiurnal tide, M, (Pawlowicz et al., 2002), and
it is these harmonic constants that are assimilated by the model.

The harmonic constants for radial velocities show consistent phase propagation from the ridge
towards the southwest (see Fig. 1), with a complex amphidromic structure on the south flank of the
ridge. The change in M, amplitude between the two periods is substantial (10 cm/s) and well exceeds
the expected error (1 cm/s). Note that the dominant semidiurnal frequencies, M, and S,, are well-
separated by the harmonic analysis of the 3-month time series.

The first period (P1) is characterized by M, current amplitudes from 16 to 20 cm/s off the ridge
in deep water. During this time, a northward mean flow of 30 cm/s was observed at the surface, and
anticyclonic relative vorticity values were typically —0.3f. Contemporaneous moored ADCP current
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Fig. 1. M, radial velocity inferred from HFR. Complex harmonic constants for the M, component of the radial velocity are show
for the Ka’ena Point (top row) and Ko’Olina (top row) antenna arrays. The left and center columns show data from the two time
periods, P1 and P2, respectively. The right column shows the nominal error estimate in the harmonic constants for P2 (similar
amplitude for P1, not shown).

measurements indicate that the mean flow was strongly sheared in the upper 300 m (Chavanne et al.,
submitted for publication-a).

During P2, the non-tidal currents were oriented more nearly north-northwest, and there was less
vertical shear. Relative vorticity was generally anticyclonic, with a value of —0.4f near shore (Chavanne
et al., submitted for publication-a). Peak currents of 40 cm/s were found further offshore than during
P1.

The relationship between the mesoscale and tidal currents is complex and discussed more fully in
Chavanne et al. (submitted for publication-b). As a guide to the possible interactions, consider the prop-
erties of M, internal waves vs. the slowly varying, non-tidal, flow. Table 1 presents the wavelength (L),
phase velocity (¢p), and group velocity (cg) of the first four internal modes at the semidiurnal frequency,
based on the time-average Brunt-Vaisala frequency at Station Aloha during P1 and P2 (Fujieki et al.,
2006), in water of depth 4000 m and 400 m. In the deep water (4000 m), there is a clear separation
between the tidal phase speed (0.75-3 m/s) and the mesoscale advective speed (approx. 0.25 m/s), so
the low modes ought to be relatively unaffected by the non-tidal currents (Rainville and Pinkel, 2006).

Table 1

M, internal modes.

4000 m depth 400 m depth

Mode L [km] ¢p [m/s] cg [m/s] V2 L [km] ¢p [m/s] cg [m/s]
1 145 3.2 2.8 3.0 x 102 40 0.90 0.79

2 71 1.6 14 1.1 x 107! 21 0.48 0.42

3 47 11 0.92 2.3 x 107! 13 0.29 0.26

4 35 0.79 0.69 3.9 x 107! 10 0.22 0.19
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Conversely, in 400 m deep water over Kaena Ridge, modes two and higher will likely interact strongly
with the mesoscale, as the phase speed of the tide is within a factor of two of the mesoscale, and
the length scales are commensurate (assuming 50 km length scale for the non-tidal flow, Chavanne
et al., submitted for publication-b). Thus, in addition to the modal conversion and dispersion due to
propagation over steeply sloping topography, conversion and dispersion due to interaction with the
mesoscale should be expected.

2.2. Primitive equations model: PEZ-HAT

PEZ-HAT is a numerical model that was developed specifically for data-assimilative studies of
the internal tide over complex bathymetry. The model name, PEZ-HAT, an acronym for “Primitive
Equations Z-coordinate-Harmonic Analysis Tides,” reflects the fact that PEZ-HAT is composed of two
components: (1) PEZ: a primitive equations model closely based on the Geophysical Fluid Dynamics
Laboratory Modular Ocean Model, version-3 (GFDL MOM3, Pacanowski and Griffies, 1999), and (2)
HAT: a set of software modules to implement the astronomical tidal forcing (with corrections for the
Earth load tide and ocean self-attraction, Egbert and Erofeeva, 2002), open boundary conditions, and
harmonic analysis of the solutions. While PEZ is based on the MOM3 numerics, it was coded from
scratch to utilize parallel domain decomposition techniques and facilitate coding of its adjoint model,
which is necessary for our intended variational data-assimilative applications. PEZ utilizes partial-cell
topography (Pacanowski and Gnanadesikan, 1998) and a squared-cosine time-averaging kernel for
the split explicit barotropic time stepping algorithm (Shchepetkin and McWilliams, 2005). For more
details of the numerical implementation, the reader is referred to Zaron and Egbert (2006b).

In the present application, PEZ-HAT is configured as a solver for the primitive equations linearized
around a horizontally uniform background state, and the turbulence mixing coefficients are set to
small, constant values. The purpose of both these simplifications is to isolate the tidal fields which can
be modeled accurately, without the confounding influences of nonlinearity (both tidal-mesoscale and
tidal self-interactions) or complex turbulence parameterization. In principle, the model could have
been integrated with a horizontally varying background state; however, absent a credible estimate
for the horizontal buoyancy field, this was not attempted. We have sought to infer the nonlinear and
dissipative dynamics from the data assimilative solutions, rather than via direct numerical simulations.

Solutions to the prior, non-data-assimilating, version of PEZ-HAT are shown below and in Chavanne
et al. (submitted for publication-a). They are obtained by time-stepping the linearized primitive equa-
tions in a regional domain centered on Kauai Channel. Boundary conditions are set by specifying the
normal component of the barotropic transport on open boundaries. The baroclinic velocity and tracer
fields use a Sommerfeld radiation condition based on the mode-1 internal wave phase speed at open
boundaries (Pearson, 1974). Used alone, these boundary conditions would lead to spurious reflections
of the higher modes, so a sponge layer is also used in which Newtonian damping and Laplacian mixing
coefficients are ramped up towards the boundary. Very high resolution is necessary to quantitatively
simulate baroclinic tidal dynamics Zaron and Egbert (2006b), and the present model uses a horizontal
resolution of 2 km and a vertical resolution that varies from 30 m at the ocean surface to 500 m at
depth. Table 2 summarizes the relevant physical and numerical model parameters.

The data-assimilative solutions shown below are obtained by utilizing PEZ-HAT configured as a
client of the Inverse Ocean Model (IOM). The IOM is a software system that generates a custom varia-
tional data-assimilative solver for any functionally smooth ocean model and observing system (Bennett
et al., 2008; Muccino et al., 2008). It implements a suite of data-assimilation algorithms and analysis
tools with the data structures and algorithms of its client model. We use the combined PEZ-HAT/IOM
system to estimate the tidal fields which most nearly agree with the HFR observations and the dynamics
of PEZ-HAT, in the sense described below.

2.2.1. Governing equations

When tidal solutions are sought, the core time-dependent primitive equations solver (PEZ) is inte-
grated forward from zero initial conditions until a nearly periodic solution is obtained. This solution
is then harmonically analyzed to obtain complex tidal amplitudes for the dependent variables. In
general, there may be any number of tidal frequencies present; however, the present work includes
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Table 2

PEZ-HAT numerical and physical parameters.
Parameter Value

AX (interior) 2km

AXx (sponge) 20 km

Az (surface) 30m

Az (deep) 500 m

Ay 5x 1074 m?/[s
Ky 0.5 x 104 m?/s
AH, KH 12 lT12/S

bo(2) HOTS

At 50s

At 1.25s

T 14M, periods
Tha 3 M; periods

The linearized primitive equations are solved in spher-
ical polar coordinates with approximate horizontal
resolution Ax; vertical resolution is Az. Baroclinic and
barotropic time steps are denoted At and At, respec-
tively. Equations are solved in the time interval [0, T]
with harmonic analysis during [T — Tya, T].

only the dominant semidiurnal M, tidal frequency, here denoted w. Let Re{-} denote the real part,
and assume that the tidal perturbations to the background are given by Re{(u, w, b, p, p, n) exp(iwt)},
where u denotes the horizontal velocity vector (u, v), w is the vertical velocity, b = —pg/p, is buoy-
ancy (computed from potential density p), p is the pressure, and 7 is the elevation of the free surface.
The background buoyancy field b,, which varies only in z, is computed from the HOTS station ALOHA
data averaged from September 2002 to May 2003 (Fujieki et al., 2005, 2006). With this notation, the
linearized primitive equations, expressed in terms of the complex tidal amplitudes, are

iwu+kau=—prp+F+D“u+f), (1)

(]

_b__lap (2)
T Po 2

V.u+d,w=0, (3)

iwb + V - (uby) + 8,(wh,) = D’b + B, (4)

where p, is the constant value of density used in the Boussinesq approximation, F denotes the tide-
generating force, d; is the partial derivative operator with respect to z, and V and V- are the horizontal
components of the gradient and divergence operators, respectively. Turbulent mixing is represented
with D"u and DPb. Coordinate variables are A, ¢, and z, longitude, geographic latitude, and height,
respectively.

The vector field ¥ = (j&, V) represents forcing in the horizontal momentum equations to account for
errors due to the neglect of the nonlinear terms and errors in the mixing parameterization; likewise,
B plays the same role in the buoyancy (mass) conservation equation. Estimates for both ¥ and 3 are
found in the inversion procedure. They are the smallest forcing corrections necessary to reconcile the
model’s surface velocity fields with the HFR data, as described in Section 2.2.2.

Turbulent mixing of momentum and buoyancy are parameterized with downgradient transport,

D'u =V - (AyVu) + 3;(Ayd,u), (5)
and
Db = V - (Ky Vb) + 0;(Kyd;b). (6)

PEZ-HAT has been designed to use a Richardson number-dependent scheme to compute the mixing
coefficients; however, in this study we have used constant values given by Ay = Ky = 1.25 x 101, Ay =
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5 x 1074, and Ky = 0.5 x 10~% m?/s. These values yielded stable numerical integrations over the range
of resolutions and topographic configurations considered, with damping timescales in excess of 5
tidal cycles for the first internal mode. At the ocean bottom and surface, the normal components of the
turbulent fluxes of heat and momentum are zero. For u, we have the free-slip condition in the form

AyVu-n=0 and Ayd,u=0, (7)
while buoyancy b obeys
KyVb-n=0 and Kvazb =0. (8)

PEZ-HAT does include a representation of the stress within the turbulent bottom boundary layer
(namely, Ay d,u = Cpu,u); however, the drag coefficient (Cp) and friction velocity (u,) have been set
to zero in this study.

Kinematic boundary conditions at material surfaces of the fluid are

w+u-VH =0, (9)
at the ocean bottom, z = —H(A, ¢), and
iwn =w, (10)

at z = 0. The surface boundary condition on pressure is p = pogn, atz = 0.

At open boundaries, the boundary conditions are posed separately for the baroclinic and barotropic
components of the flow. Barotropic fields are defined as vertical averages, indicated with the overbar
(except for w, defined below), i.e.,

1 /[°
a=ﬁ[ adz, (11)

where the water depth is H. Baroclinic fields are defined as deviations from the barotropic and denoted
withaprime,i.e.,a’ = a — a.The boundary-normal barotropic flow is set with Dirichlet-type conditions,

ii-n=U, (12)

where U is the imposed (boundary-normal) barotropic velocity, and n is the outward normal. A no-
stress boundary condition is used for the tangential component of the barotropic velocity. Wave
radiation boundary conditions are used for the baroclinic velocity and the active tracer b,

iou’ +cpVu'-n =0, (13)
and
iwb +c,Vb-n =0, (14)

where the wave speed, ¢y, is set to the phase speed for the first internal mode.

2.2.2. Adjoint model

The framework for data-assimilative modeling and analysis in the IOM is based on a least-squares
variational formulation of maximum likelihood estimation. If the errors in the model and data are
normally distributed with known covariance, the IOM obtains the maximum likelihood estimator for
the model’s dependent variables. In practice, the structure of the errors is known approximately, at
best, and the IOM produces a regularized estimate of the dependent variables. This estimate is the
unique set of fields which minimizes a weighted sum of squared data and model residuals (Bennett et
al., 2008; Bennett, 2002; Chua and Bennett, 2001). Assuming that the model errors are exclusively in
the momentum and mass conservation equations, our estimate for the tidal fields minimizes the cost
function,

Ju,w,b,p,n)=Dov+BoB+(Llu] —d) Cga (L[u] - d), (15)

where o denotes the inner product corresponding to integration over the three-dimensional spatial
domain, d is the real-valued vector of observed data, £ is a vector of observation operators that act
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on u, and Cq4q is the hypothesized measurement error covariance matrix. The weighting of the model
errors is implicit in the definitions of 8 and v, Lagrange multipliers for (1) and (4), namely,

D?=Cypov and B:Cﬁﬁoﬂ, (16)

where Cyy and Cgg are estimates of the spatial covariances of the errors in the momentum and mass
conservation equations, respectively, both functions of (A, ¢, z; A/, ¢’, ). It is tacitly assumed that the
data and model forcing errors are uncorrelated.

Minimization of J is accomplished via the indirect representer algorithm of Bennett (2002), orig-
inally developed in the context of barotropic tidal estimation (Egbert et al., 1994). For this purpose,
the so-called adjoint model must be integrated; these are the equations governing the Lagrange mul-
tipliers associated with the minimization of (15) subject to (1)-(14). A lengthly but straightforward
application of integration by parts yields,

—iwv - fkx v=Vw + I + D", (17)
Bozb, = 0, w, (18)
V.v+d,m7=0, (19)
—iwpB+m =DPB; (20)
with boundary conditions
v-n=0 onopen boundaries; (21)
7+v-VH=0 onz=-H(},¢); and (22)
—iw€ +gmr =0 and (23)
w—-€=0 onz=0. (24)

Note that the change of variables, @ = v, p/p, = —~w, b = Bb,, W = 7, and gfj = —€ transforms the
system (17)-(24)into (1)-(14) with the following modifications to the Coriolis parameter and diffusion
operators: f — —f, and DPb — Bsz(E/BZ). The inhomogeneity, I, is a given linear combination of the
observation kernels in L.

The implementation utilizing the IOM requires a solver for the forward model, (1)-(14); a solver for
the adjoint model, (17)-(24); definition and implementation of the model forcing error integrations,
(16); and the definition and implementation of the observation operators £ in Eq. (15) and implicitly
in (17). The solver for the forward model was described in Section 2.2; the other implementations are
as follows:

The adjoint solver for Eqs. (17)-(24) is implemented with the finite-difference of the continuous
adjoint equations (Sirkis and Tziperman, 1997). The accuracy of the adjoint properties of the system
were verified by conducting a series of convergence experiments as the grid- and temporal resolution
of the solver was increased. Errors in the adjoint properties are due primarily to the spin-up and
harmonic analysis procedures in PEZ-HAT. Using the model grid and time-stepping parameters in
Table 2, symmetry errors in the adjoint solver are between 10 and 20%.

The model forcing error covariance integrations (Eq. (16)) are implemented via a factorization of the

form C = (C'/2)'C1/2, where

P
Cl/z()"v ¢)! Z; )“/’ ¢/’ Z,) = HCX()"V )‘,)C¢(¢7 ¢/)CZ(Z’ Z,)U()"/v ¢/7 Z/)v (25)
p=1

and the uni-dimensional kernels (¢y,, ¢4, ¢z) are solutions of

52
(1 —L,%axz) Cx = Nid(x — X)), (26)

where §(x) is a Dirac delta function and Ny is a normalization coefficient, the’ denotes operator adjoint,
and x € {A, ¢, z}. Neumann boundary conditions are used. The parameters L and P are selected to yield
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the desired spatial correlation scale and asymptotic power-spectrum roll-off rate of the respective
model forcing errors, Cyy and Cgg. The parameter o is the nominal amplitude of the forcing error.
Normalization coefficients, A, are obtained from the requirement that C(A, ¢, z; A, ¢, z) = 62(X, ¢, 2).
The rationale behind the formulation (25) is that the inner products in (16) are computed with fast
tridiagonal solvers for the uni-dimensional systems (26). Another consequence is that the normaliza-
tion coefficients can be determined exactly on a uniform grid. This implementation can be regarded
as a generalization of the approach in Purser et al. (2003), where the convolutions are implemented
with spatially lagged recursive filters. The models (25) and (26) are an approximation to the radially
symmetric covariance functions proposed by Whittle (1954), later generalized and analyzed in Vecchia
(1985).

The observation operators £ = {Zm}",,Ll are parameterized by the location (A, ¢m)and the azimuthal
angle (®,) towards the HFR array at each point in the antenna’s field of view, i.e.,

Cmlu] = u(Am, Pm, 0) cos Dpy + V(Am, Pm, 0) sin Dy, (27)
The implementation follows from expressing £, as linear operator on u,
Cnlu] =Lin(%, ¢, 2) o, (28)

with

O
Ln = 80 Jm. & — bm. 2) (“’50 " Sinoq,m) (29)

and §(A, ¢, z) is the Dirac delta function in spherical-polar coordinates.

2.3. Hypothesized model errors, Cyy and Cgg

In this section we analyze the errors, both physical and numerical, in PEZ-HAT in order to justify
the weights used in the cost function (15).

Errors in the forcing functions, boundary conditions, and bottom topography. The astronomical forcing
functions and boundary conditions on the barotropic flow are known with great accuracy. The principle
errors in the astronomical forcing are connected with uncertainty in the treatment of solid-earth
loading and self-attraction. These are on the order of 5% of the astronomical potential (Egbert et al.,
2004), which, while significant, is largely in equilibrium with the tidal solution forced by the barotropic
boundary conditions. The barotropic open boundary currents are taken from a highly accurate regional
data-assimilative model which is constrained by satellite altimetry data and the best available global
tidal solutions (Zaron and Egbert, 2006a). The barotropic currents are believed to be accurate within
a few 1 cm/s (Zaron and Egbert, 2007; Dushaw et al., 1997).

Because the site of the HFR observations is dominated by a locally produced baroclinic tide we
neglect errors connected with the baroclinic open boundary condition and sponge layer. In other
words, we assume that the remotely generated internal tide which propagates into the domain is
negligible.

Of more significance are potential errors in the bottom boundary conditions due to uncertain
bathymetry. The consequences of these errors can be understood from the analysis of Llewellyn Smith
and Young (2002), who derived the energy conversion rate for a barotropic tidal current over small
amplitude topography. Utilizing the Green'’s function for the primitive equations (linearized around
a state of uniform stratification and small-amplitude topography), they find that the baroclinic pres-
sure field is proportional to Vh, and the energy flux is proportional to [k||i(Kk)|2, where |A(K)|? is the
power spectral density of the topography, a function of the two-dimensional wavenumber, k = (k, I).
This spectral representation shows that the internal tidal fields are sensitive to the high-wavenumber
components of the bathymetry (cf., Zaron and Egbert, 2006a).

The bathymetric data used are a compilation of multi-beam sonar smoothed and gridded at 2 km
resolution (Carter, 2006). Comparison with another high-resolution bathymetric database (150 m-
resolution, Eakins et al., 2003) indicates that the largest errors are inhomogenously distributed, with
root-mean-square errors of 45 m, but median absolute errors of only 12 m. Below 500 m depth, the



102 E.D. Zaron et al. / Dynamics of Atmospheres and Oceans 48 (2009) 93-120

A Bathymetry [m]
-50 "] 50 100

Bathymetry

100

meters
- — —percent

80

60

error

40

latitude [deg N]
latitude [deg N]

20

A : o
2005 201 2015 202 2005 201 2015 202 0 1000 2000 3000 4000 5000
longitude [deg E] longitude [deg E] depth [m]

Fig. 2. Bathymetric uncertainty. Left: 2 km-resolution bathymetry (thick contours every 2000 m; thin contours every 500 m).
Center: difference, 2 km- vs. 150 m-resolution bathymetry data, smoothed and gridded to 2 km. Contours lines are the same as
in left panel. Right: root-mean-square depth difference, binned in 50 m depth intervals.

root-mean-square errors are uniformly less than 10%, and below 2000 m the errors are less than 5%. The
1 km-resolution bathymetry and statistics of the comparison with 150 m-resolution data are shown in
Fig. 2.

Errors in the physics of PEZ-HAT. The hydrostatic and Boussinesq approximations are the primary
physical approximations in the primitive equations. Both of these are very satisfactory at the scale and
resolution of our modeling efforts. Additionally, we have adopted the “traditional approximation” of
the Coriolis force which is justified in the upper ocean where N2 /f2 is large (Gerkema, 2006).

Of more significance is the error connected with the linearization of the primitive equations around
a horizontally uniform background state. The neglected terms are u - Vuin Eq. (1) and u - Vb in Eq. (4).
We hypothesize that these terms are dominated by the components due to steady or slowly varying
non-uniform background state. We take iip = 0.2 m/s as a typical speed for the surface mesoscale
currents (Chavanne et al., submitted for publication-a, s), decaying vertically like N1/2, with a horizontal
correlation scale of L = 25 km and a vertical correlation scale of 300 m. The spatial correlations are
assumed to asymptote to —4 power dependence for large wave number, which insures spatial regularity
for the linearized primitive equations. Using the prior, data-less, solution, we estimate ug = 0.25m/s
as the scale for the tidal surface velocity, and assume the same horizontal and vertical scaling as the
mesoscale field. The same basic scaling is also applied to the mass equation (4) using a buoyancy scale
by equivalent to a tidal temperature perturbation of 6° C at the depth of the N2 = —(b,), maximum.
In summary, we assume

_ Tiotig No(2)

ou(z) = L N and og(z) =

fighg No(z)
L N

, (30)

where N is the vertical average of N,.

Error caused by our simplified representation of the Reynolds stress is more difficult to estimate.
The HOME project found that turbulence dissipation is largest within 60 km of the Hawaiian Ridge
axis, with significant variability in space and time, which is not independent of the tides (Klymak et
al., 2006; Rudnick et al., 2003). Rather than make any attempt to realistically model the turbulent
cascade in PEZ-HAT, we have taken the approach of minimizing the explicit impact of the Reynolds
stresses by assuming downgradient turbulence transport and small, spatially constant, transport coef-
ficients. A posteriori, we can check the validity of this approach by estimating upper bounds on the
size of the Reynolds stress divergence in comparison with the diagnosed tidal-mesoscale and tidal
self-interactions. This is done in Section 3, below, and we find that the impact of turbulence transports
on the tidal fields is likely to be minimal, except in boundary layers at the ocean surface and bottom.

Numerical solver errors. The numerical truncation errors in PEZ-HAT may be significant, and depend
largely on how well the bathymetric features are resolved. For two-dimensional experiments, the
empirical order of convergence for PEZ-HAT is quadratic in the model’s prognostic variables, which
leads to essentially linear convergence of energetic diagnostics (Zaron and Egbert, 2006a). Comparisons
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of PEZ-HAT with analytical solutions for the tidal conversion over a two-dimensional ridge (Petrelis
et al,, 2006) indicate that resolution of 5 km in the horizontal and 80 m in the vertical is necessary to
resolve the barotropic to baroclinic energy conversion to within 10% for smooth ridge profiles similar to
Ka’ena Ridge (Zaron and Egbert, 2006b). Precise convergence criteria in three dimensions for realistic
topography are not known, but the requirements are evidently stringent (Carter et al., 2008; Simmons
et al., 2004a; Niwa and Hibiya, 2004). In the present application, convergence experiments suggest
that the truncation errors are comparable to the uncertainty caused by the bathymetric data, being
roughly 5% to 10%.

3. Results
3.1. Data-less prior solution

The prior model is governed by the primitive equations, described above, and it is forced via
barotropic tidal currents inferred from a larger-scale data-assimilating barotropic tidal model (Zaron
and Egbert, 2006a). The boundary forcing is consistent with the full record of TOPEX/Poseidon altimet-
ric data, from which we infer that the surface tide loses energy at a rate of 1.1-1.7 GW in Kauai Channel
and the nearby region. This value is uncertain for the small domain considered here, given the nominal
inter-track spacing of 200 km (Zaron and Egbert, 2006a). However, the use of a prescribed barotropic
velocity boundary condition in PEZ-HAT does not constrain the value of the barotropic energy loss,
because this quantity is determined by the relative phase of the barotropic transport and the ocean
surface elevation on the boundary (Egbert and Ray, 2000), and this latter quantity is free to adjust in
these simulations.

Fig. 3 illustrates the solution of the prior model, and the reader is referred to (Chavanne et al.,
submitted for publication-a) for a more detailed comparisons to the HFR as well as other model sim-
ulations. The elevation of the free surface is dominated by the barotropic tide (Fig. 3 A, shown at the
time of maximum across-ridge gradient), with small perturbations from the internal tide. The dynamic
height anomaly, i.e., ff)H b dz (Fig. 3B), shows more clearly the amplitude and phase propagation of the
low-mode internal tide generated at Ka’ena Ridge. Section views, looking to the northwest along the
ridge (Fig. 3 D and E), show intensification of tidal kinetic energy along characteristics of the internal
tide, and isopycnal displacements in excess of 50 m. The beams of elevated kinetic energy intersect the
ocean surface approximately 40 km from the ridge, where they are associated with enhanced surface
kinetic energy (Fig. 3C). The intensification of kinetic energy along tidal characteristics is the result of
coherent propagation of multiple wave modes. Kinetic energy is elevated because the energy density
of the ray tubes is proportional to the surface area of their intersection with the bottom.

For comparison with the HFR observations, Fig. 4 shows the radial component of the M, surface
velocity field computed with PEZ-HAT. The model has a well-defined band of high velocity south of
Keana ridge, at 21.5°N, which is associated with the first surface bounce of the internal tide generated
on the north side of the ridge (Nash et al., 2006). Compared to the HFR data (cf., Fig. 1), the surface radial
velocities and their spatial gradients are larger in the model. While there is some qualitative similarity
between the model and observations, the differences are, on average, about twelve times larger than
the data uncertainty (right panel, Fig. 1). Can these differences be explained by tidal-mesoscale inter-
actions? We address this question next, by generalized inversion of the primitive equations together
with the HFR data.

3.2. Data-assimilative solutions

The methodology described in Section 2 has been used to assimilate data from the two periods,
P1 and P2, into PEZ-HAT. For each period we obtain an estimate of the tidal fields that minimize the
weighted sum of squared model and data errors (15), where the observations are weighted with the
inverse of the nominal observation error, and the model dynamics are weighted with the inverse of a
plausible estimate of the model forcing error. Because the estimated tidal fields do not exactly satisfy
the equations of motion, we also obtain estimates of the advective and convective terms which are
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hypothesized to be the dominant source of error in the model. These terms will be referred to as the
model residuals.

Fig. 5 shows the difference fields for the optimal estimates of the radial velocity for P1 and P2. The
estimated velocity fields, not shown, are visually indistinguishable from the observations in Fig. 1. The
model-data residual tends to increase with increasing range from the antennas, in accordance with the
expected errors. This is further illustrated in Fig. 6, which shows the probability density of the model-
data residual during P1. On average, the residual in the optimal solution is about 2/3 the nominal data
error. The number of observations in the P1 assimilation is M = 5694. The residual is not Gaussian and
the data assimilative solution appears to over-fit most of the data (there are too many small deviations
relative to a Gaussian with the same variance). Thus, there may be some benefit to refining the model
and data error estimates; however, it appears that they are estimated to within better than an order
of magnitude. The distribution of misfits for the P2 assimilation (M = 5058) is similar (not shown).

Figs. 7 and 8 show other views of the data-assimilative solutions during P1 and P2. Compared
with the prior solution (Fig. 3), we can see that the surface dynamic height (panel B), i.e., the surface
expression of the internal waves, exhibits a complicated pattern of phase propagation from the ridge.
The amphidrome south of O’ahu in the prior evidently depends on a rather delicate balance of local and
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remotely generated waves for its existence. During P1, the surface velocities (panel C) are intensified
at the western most extent of the Ko’Olina array viewing area, about 20 km southeast of Kauai. This
feature is not present during P2. The cross-sectional views (panels D and E) show that the southward
beam of baroclinic energy has been diminished, while the northward beam has been intensified.
Although these features appear as beams, they are actually sheets of elevated kinetic energy in three
dimensions. It is unfortunate that data north of the ridge is lacking, as it would provide some validation
of those aspects of the data assimilative solutions which are removed from the HFR observing arrays.

3.3. Comparison with independent data

Figs. 5 and 6 indicate that the data assimilative solutions are plausible when judged solely against
the HFR data. However, some aspects of the solution appear to be less plausible, such as the surface-
intensified currents southeast of Kauai during P1. To assess the validity of the data assimilative
solutions, we utilize two other sources of information, namely, (1) moored acoustic Doppler current
profilers (ADCP) from the Hawai'i Ocean Mixing Experiment (HOME), and (2) satellite altimetry.

Fig. 9 compares the optimized solution during P2 with data from the HOME A2 mooring (the reader
is referred to Chavanne et al., submitted for publication-a and Zilberman et al., 2008 for details regard-
ing the moorings). The amplitude of the currents is improved in the upper 400 m of the water column,
and the phase is changed slightly. This mooring is located on the flank of Ka’ena Ridge, near its south-
west edge, in water approximately 1300 m deep. One can see that the mismatch in the currents below
1000 m are not improved in the assimilative solution. These unrealistic bottom currents in the model
are responsible for a beam of baroclinic energy that intersects the ocean surface north of the ridge.
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Fig.9. Comparison with A2 mooring. The panels show the PEZ-HAT prior (blue line), P2 optimal solution (red line), and mooring
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Without observations to the north, there is no way for the data assimilative solution to correct the
bottom currents at the site of the A2 mooring. Comparisons at the C1 and C2 moorings (not shown)
indicate substantially similar results: root-mean-square misfits are for current amplitudes are reduced
by 2-4 cm/s in the upper 400 m. Deeper currents are not significantly altered in the data-assimilative
solutions, and, in any event, there is much better agreement at depth at these two sites.

Fig. 10 compares the amplitude and phase of the prior model with satellite altimetry data. The
quantitative comparison in each panel (Arms) is the root-mean-square error over a rectangular
area somewhat larger than the HFR viewing area; it is shown only for those satellite ground tracks
passing through the HFR viewing area. Because the orbit repeat time and length of time series of
TOPEX/Poseidon (TP, 332 orbit cycles), Geosat Follow-On (GFO, 87 orbit cycles), and Earth Remote
Sensing (ERS, 47 orbit cycles) all differ (Andersen and Knudsen, 1997), the standard errors for the M,
amplitude estimates are approximately 1, 1.5, and 2 cm, respectively. The comparisons show that,
overall, the model tends to predict a somewhat smaller baroclinic response at M, than is present in
the data; although, there are significant exceptions and possible anomalies (e.g., GFO-017, ERS-396).
Also, there appears to be a systematic offset of approximately 5 degrees in phase north of the Hawaiian
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Fig. 10. Satellite data vs. PEZ-HAT prior. Upper-right panel shows satellite ground tracks: TOPEX/POSEIDON (TP, solid line),
Geosat Follow-On (GFO, dashed line), and Earth Remote Sensing (ERS, thin dashed line). The other panels show the amplitude
and phase of the M, harmonic constants for the satellite data (gray line) and the prior solution of PEZ-HAT (dark line).

ridge, with the observed phase leading the model. Again, there are exceptions, ERS-016 and ERS-026,
with little or no phase difference.

Of these satellite altimeters, TP has been most widely used in tidal studies, and the differences
between the model and TP may reflect either systematic inaccuracies on the model simulation, or
they may result from real temporal variability of the tide (cf., Chiswell, 2006). The 10-day repeat
time of TP orbit means that it will systematically underestimate the amplitude of the M, harmonic
constant. Rainville and Pinkel (2006) quantified this for tidal waves refracted by the mesoscale eddy
field in the open ocean around Hawai'i, finding the average amplitude of M, reduced as much as 0.5 cm
within 250 km of the ridge. This number depends greatly on vertical structure of the mesoscale and the
detailed modal structure of the tide, with mode-2 and higher impacted much more than the barotropic
and mode-1 signals (Chavanne et al., submitted for publication-b).

Comparing the data-assimilative solutions with the satellite altimetry yields equivocal results.
There is a 0.2 cm increase in agreement of amplitudes along the TP-112 track for the P1 solution; how-
ever, there is a slight decrease in agreement of phase. As shown in Figs. 11 and 12, the data-assimilative
surface elevations are only slightly modified from those obtained with the prior model.
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Fig. 11. Satellite data vs. P1 inversion. The altimetry data is compared with the P1 data-assimilative solution along a subset of
the ground tracks shown in Fig. 10 that pass through the HFR viewing area. There is a modest improvement in the agreement
with the TP-112 track with amplitude errors reduced from 0.95 cm to 0.75 cm, but the phase error is increased from 5.8° to 6.3°.
None of the changes in misfit is significant compared to he uncertainty in the altimetry data.

3.4. Residual forcing

The data assimilative solutions provide two sets of quantities, (1) the tidal velocity, buoyancy, and
pressure fields, and (2) the residual forcing functions ¥ and B. By construction, the residual forcing is
the smallest correction (as measured by the norm implied by the penalty function) which is necessary
to bring the modeled surface currents into agreement with the HFR data. In this section, we look at
the residual fields to understand the dynamics of the optimal solution, and to evaluate the plausibility
of the term balances.

The residual forcing fields are generally largest near the ocean surface, and small compared to
the acceleration (iwu). How do they compare with the prior estimates? The magnitude of the model
residual is shown in Fig. 13 at a series of representative sites for the P1 solution. The diagrams also
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Fig. 12. Satellite data vs. P2 inversion. The P2 data-assimilative solution has somewhat larger misfits, compared to the altimetry
data. Like the P1 solution, the changes from the prior solution are smaller than the uncertainty in the altimetry data.

show the nominal prior estimate of the model residual, i.e., 05,,), which was estimated from a scale
argument (Section 2.3). Throughout most of the water column (e.g., Site 1), the optimal residual forcing
is a factor of ten or more smaller than its hypothesized value, and the corrections to the model are
mostly confined to the surface, near the HFR measurements. Over topography that is steep, shallow,
or both, the residual forcing is more comparable to its hypothesized magnitude. Overall, the model
residual is smaller than its prior estimate, which is consistent with the fact that the data-assimilative
solutions over-fit the observations. Results for P2 (not shown) are similar.

A more detailed look at the forcing residuals for P1 is shown in Fig. 14. Once again we see (Fig. 14A)
that the forcing corrections are largest within the viewing area of the HFR, although values as high
as 0.5w|u| occur at the western-most boundary of the viewing area. The other panels in the figure
show cross-sections of |9| through this surface feature. Panels B and C show a maximum in surface
dynamic height and kinetic energy centered near this same site, at the western-most limit of the
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observations. Unfortunately, we do not have independent data to evaluate the validity of this region
of surface intensified tidal currents. Given its scale and proximity to the edge of the observing array;, it
should be regarded with caution, but it is noteworthy that a strong mesoscale eddy did pass this edge
of the array during P1 (Chavanne et al., submitted for publication-b). In this case the forcing residual is
localized to the change in circulation, whereas, in other cases the change in circulation is more related
to remote forcing near the topography, or to more subtle changes in modal composition of the fields.

Looking next at the residual forcing in the buoyancy equation, 8, we find that it is essentially zero.
On average, it is about 102 times smaller than the prior estimate, 5. The data assimilative solution has
the smallest forcing corrections necessary to explain the HFR observations, and corrections to mass
conservation are simply unnecessary given the permitted level of error in the momentum equations.
This result is a consequence of the rudimentary statistical model for tidal-mesoscale interactions in
Section 2.3. A proper representation would involve a state-dependent covariance and would include a
proper cross-covariance for 8 and v. A possibly simpler and more expedient approach would involve
using a nonlinear model of both the tides and mesoscale; this will be addressed further in Section 4,
below.

3.5. Energetics and baroclinic conversion

An examination of the term balance in the equations for kinetic energy and available potential
energy is presented in Tables 3 and 4. Because the barotropic and baroclinic velocity fields are orthog-
onal, by definition, equations for the kinetic energy in each mode are de-coupled in the linearized
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Fig. 14. P1 model residual. (A) Left: scaled residual forcing at the ocean surface, w1, units of cm/s (cf,, Fig. 3C). Dashed and
solid lines indicate cross-sections shown panels B and C, respectively. (B) Middle: scaled residual forcing magnitude, 2|92,
along the dashed section. (C) Right: scaled residual magnitude along the solid section.
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Table 3

Energy equation: volume integrals.

Term [units] Prior P1 P2

[@? [T]] 181 190 167
—u- I [Gw] -0.26 —0.40 —-0.25
i F [GW] 0.45 0.45 0.45
@t D'u* [GW] -0.14 -0.12 -0.11
i ' [GW] 0 0.21 0.05
€ [GW] -0.15 -0.14 -0.14
w2 [T]] 95.5 105 82.2
—u - I [GwW] 0.25 0.00 0.12
u' - D'u* [GW] -0.13 -0.12 -0.11
u ' [GW] 0 0.24 0.09
€ [GW] —0.12 -0.12 -0.10
o (1) 79.0 88.3 67.4
—bw* [GW] 1.46 1.1 1.22
—b(w')* [GW] -1.32 -0.98 -1.10
ﬁobb* [GW] —0.09 -0.08 —0.07
= BIGW] 0 0.00 0.00
€APE [GW] -0.05 -0.05 -0.05

model. The barotropic kinetic energy equation is

: =2 = vp* el £3 = Uyg gk = Ak =

iwlu| =—u-?+u»F +u-D'u*+u-v +¢€, (31)
where super-script* indicates complex-conjugate. Note that Eq. (31) contains an extra term, €, which
arises because the time-stepping and harmonic analysis procedure in PEZ-HAT does not exactly solve
Eq. (1) in the frequency domain. The baroclinic kinetic energy equation is similar,

. Vp*
la)lu/lz - —u. p

+u -F+u . -Dlu*+u - D"+ €, (32)
(]

where we note that w’ = u — u is orthogonal to u. The available potential energy equation is

|b)2 b b
= —-bw* + ——D"b* +

(bo), (bo), (bo),

Because the fluid is incompressible and in hydrostatic balance, integration by parts can be used to
show that the energy equations are coupled through the pressure gradient terms,

/u-Vp*+/bw*=/ (up*) - n, (34)
D D oD

where D and 9D refer to the computational domain and its boundary. This latter relation holds sep-
arately for u and w’ provided that w and w’ are defined appropriately (Zaron and Egbert, 2006b).

iw B+ €PE, (33)

Table 4

Energy equation: boundary terms and integrals.

Term [units] Prior P1 P2

fa upIGW] 1.06 0.97 0.97

max|u'p| [KW/m] 5.9 5.6 5.3
oD

max|itp,gn| [kW/m] 91 91 92
oD
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The values shown in the Table 3 have been computed from the finite-sum analogues to the volume-
integrated energy equations, and the values have been scaled by p, to yield energy in Joules. Also, note
that the the sponge layer has been excluded from the volume integrals.

There are several important points to note from Table 3. First, the solver residuals (€, €, and €APE)
are comparable to the explicitly modeled dissipative terms in all the solutions. This occurs because
the primitive equations admit a narrow viscous-diffusive boundary layer scale which is not resolved
in the simulations (Balmforth et al., 2002), so the solver residual is significant in the boundary layers
along the internal wave characteristics. In spite of this, numerical experiments have demonstrated
that the resolved fields, and volume integrals of the viscous and diffusive terms, are stably computed
by PEZ-HAT (Zaron and Egbert, 2006b).

A second observation from Table 3 is that the forcing residual, i.e., the forcing correction necessary
to make the model agree with the HFR observations, is never more than twice as large as the dissipa-
tive terms. Although the prior solution is rather different from the HFR data, the forcing corrections
necessary to reconcile the model with the observed fields are modest. In spite of this, the large scale
fields have been altered to reduce the radiated internal waves substantially. The baroclinic conversion
rate (denoted —bw*) is reduced from 1.46 GW, in the prior model, to 1.11 GW in P1 and 1.22 GW in P2,
reductions of 24% and 16%, respectively. The conversion of the barotropic tide into internal motions
relies on a very delicate phase relationship between the currents and pressure field. Note from Table 4
that the barotropic wave energy flux (i1p,gn) is approximately 90 kW/m, while the radiating baro-
clinic wave energy flux (max |u'p’|) is around 5 kW/m; although, values as high as 15 kW/m occur near
the conversion sites. The topography scatters a small fraction of the incident barotropic energy into
baroclinic waves.

Fig. 15 shows the spatial structure of the work done by the residual forcing for the P1 and P2
solutions. As was shown in Fig. 13, the strongest model corrections occur near the ocean surface and
in the vicinity of topographic slopes. The single feature common to both the P1 and P2 residuals is the
barotropic dissipation on the shallowest part of Ka’ena Ridge, where the residual is about 50 mW/m?2.
This is comparable to what one would expect in a turbulent bottom boundary layer, which would
require |u| ~ 0.1m/s to make C4lu|® account for the residual forcing (C; = 2 x 103 is assumed). In
deeper water the residual work is comparable to what might be hypothesized for turbulent dissipation,
but the residual acts to both accelerate and decelerate the flow so it cannot be simply an estimate of
the frictional terms there.
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4. Discussion

We have shown that the HFR surface velocity observations are consistent with the predictions of
the regional primitive equations model when we account for plausible errors in both the model and the
data. In the present case, the model errors are scaled by assuming they arise from interactions between
the M, tide and the slowly varying background current. Taken at face value, this would suggest that
mesoscale variability reduces the conversion of barotropic to baroclinic tides by about 20%, compared
to what it would be in its absence. There are, however, some aspects of the data-assimilative solutions
which are not consistent with tidal-mesoscale interactions. In this section we consider some additional
factors.

The fact that the data-assimilative solution assigned nearly all of the residual forcing to the momen-
tum equations, and essentially none to the mass equation, is inconsistent with our picture of internal
wave propagation through a slowly varying mesoscale ambient. Kunze (1985) analyzed the dispersion
relation for internal waves propagating through a quasi-geostrophic background and showed that the
dominant interactions, aside from the Doppler shift, are determined by two terms. In the momentum
equations, the interaction arises from varying the effective Coriolis frequency by the relative vorticity
of the background flow; and in the mass equation, the straining of the waves by the thermal wind
shear, u - Vb, should be of first-order significance, approximately 20% of |iwb|. The data-assimilative
solutions found here allocate essentially all of the model forcing error to the momentum equations,
and none to the mass equation. In other words, the momentum equation residuals are comparable to
the assumed model errors, while the residuals in the mass equation are much too small.

In fact, the data-assimilative algorithm has found just what was expected from such a “least-
squares” formulation, namely, the smallest possible correction to the prior model which is consistent
with the observed surface currents. Absent either (i) a more complete description of the covariance
between the model forcing errors, ¥ and B, or (ii) an improved estimate of the three-dimensional
non-tidal fields, it is unlikely that the present approach to estimating the tidal fields could be substan-
tially improved. At the present level of description, only corrections to the momentum equations are
required.

Could other processes be responsible for the discrepancy between the prior model and the obser-
vations? A range of plausible alternatives is considered below.

4.1. Turbulent mixing

Direct observations of turbulence microstructure on the Hawaiian Ridge find that dissipation
rates vary over the spring-neap cycle, but the average value in Kauai Channel ranges from 10-2 to
10-! mW/m? over the uppermost 1000 m of the water column (Klymak et al., 2006). Turbulence dis-
sipation is roughly a factor of 10 or more too small to account for the model residual near the ocean
surface (see Fig. 15), but it is of the correct magnitude to explain the residual deeper in the water
column.

4.2. Tidal self-interactions

One way to assess the M- M, interactions is to compute the Stokes velocity of the tidal currents
(Longuet-Higgins, 1969), i.e., the tidal average of

t
u5=/ Re{ue®!'} dt’ - VRe{ue®t}, (35)
0

and examine the relative magnitude of self-advection, us - Vu, and the corrections to the momentum
equations, . We have computed this quantity (not shown) and find that the Stokes velocity reaches
maximum values of 10 cm/s in the shallowest water over Ka'ena Ridge near Ka’ena Point. Over the
deeper water, e.g., south-east of Kauai, the Stokes velocity is less than 1cm/s, a factor of 10 or more
too small to account for the model residual.
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4.3. Temporal variability of the mesoscale

The model forcing error proposed in Eq. (30) is based on the assumption of a steady, but spatially
varying, mesoscale eddy field; however, Chavanne et al. (submitted for publication-a) find significant
temporal variation in semidiurnal band energy thatis unrelated to the spring-neap cycle. These tempo-
ral variations in phase decorrelate on a time-scale between 10 and 20 days, so there are approximately
6 degrees of freedom in each of the 3-month periods, P1 and P2. It is difficult to quantify the impact
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of this process, since the effect depends on the phase integrated along the (time-varying) ray paths.
One crude estimate is simply to take the observed phase variation, about 66y = 10° = 0.27 rad (cf,,
Fig. 14 of Chavanne et al., submitted for publication-a), and assign this entirely to mode-1, the largest-
amplitude mode. The phase change of the n > 1 other modes can be estimated as 60, = cn/c1601,
assuming phase variability is due to propagation path length changes. Random phase variations ought
to reduce the coherent tidal variance by a factor viz =1- exp(—(69),~2) (e.g., Colosi and Munk, 2006),
and these values are tabulated in Table 1 for internal modes in water of 4000 m depth. Fig. 16 shows
a modal decomposition of the surface kinetic energy for the prior and inverse solutions. These modes
are the locally defined internal modes, which form a convenient basis for orthogonalizing the variance
of the solutions; although, they are dynamically coupled where the bottom depth is not constant. It is
evident that higher modes are increasingly modified in the inversions, but the changes are not simply
proportional to a scalar factor, v;. Furthermore, the amplitude does not decay monotonically away from
the generation sites as would be expected from simple phase decorrelation along ray paths. Thus, it
does not appear that temporal variability in the background fields can simply explain the observed
surface currents; although, the magnitude of the corrections increasing with mode number is broadly
consistent with this process.

4.4. Bottom topography

As mentioned in Section 2.3, the bathymetry data which define the computational domain are
certainly contaminated with error. Here again, it is difficult to conclusively evaluate impact of these
errors on the model; however, there are two facts worth consideration. First, the solutions of the prior
model are relatively insensitive to increased computational resolution. Higher resolution simulations
(not shown) have more well-defined zones of elevated surface kinetic energy than those shown in
Fig. 3. And, second, the changes in bathymetry necessary to effect a change from the prior to the
observed surface current would involve major reconfigurations of the bathymetry over scales of at
least 10 to 20 km, e.g., the scale of the displacement in the maximum of the surface kinetic energy. It
seems unlikely that the bathymetry errors are sufficient to account for much of the difference between
the prior and observed surface currents.

5. Conclusions

We have used a data-assimilating primitive equations model to assimilate HFR surface current
observations in Kauai Channel, a site of intense baroclinic tidal generation. There are significant differ-
ences between the prior model and the observed currents, but these can be reconciled by admitting
plausible corrections to the model to account for errors in the model physics, namely, the neglect of
variations in the background stratification, advection, and turbulence mixing. These terms have been
estimated by considering the influence of the slowly varying non-tidal (mesoscale) fields.

The amplitude of the model corrections is small. The residual forcing is largely confined to the
upper 300m of the water column in the viewing area of the HFR arrays. In other words, the dis-
crepancy between the data-less prior model and the observations can be explained by upper-ocean
processes near the observation sites. In the upper ocean these corrections are consistent with the esti-
mated magnitude of tidal-mesoscale interaction, which are roughly 10 times larger than independent
observations of turbulence dissipation (Klymak et al., 2006). The residual model forcing corrections
deeper in the water are mostly confined near the ocean bottom at sites of strong cross-isobath flow
where the baroclinic tidal generation occurs; however, the corrections are generally so small that we
cannot distinguish them from numerical solver error.

Two data-assimilative solutions have been found during 3-month periods in 2002 (P1) and 2003
(P3). The tidal solutions during these periods are different in detail, but they have similar energetics.
The barotropic tide loses energy at a rate of 1.1 GW during P1 and 1.2 GW during P2, the prior estimate
being 1.5 GW. Considering that the numerical solver error is estimated to be about 10%, the differences
in the energetics during these periods is not significant, but the reduction compared to the prior may
be.
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The estimation procedure has allowed us to dynamically interpolate and extrapolate the tidal fields
which are consistent with the HFR surface currents. Unfortunately, we cannot unambiguously deter-
mine the energetic relationship between the tides and the mesoscale. The assimilation procedure, by
design, finds the minimum residual forcing fields to bring the solution into agreement with the data.
But it is only necessary to add forcing to the momentum equations, leaving the mass equation unad-
justed. Consequently, the residual forcing fields are not dynamically consistent with the perturbations
one would expect for internal wave propagating through a slowly variable ambient. Alternate expla-
nations for the residual forcing were explored, the most likely alternative being tidal interactions with
temporal variations in the background.

The next logical step for investigating tidal-mesoscale interactions must involve explicitly modeling
both time scales. The challenge is to resolve the spatial scales which span from 2 km or less (Carter
et al., 2008) at the generation site, to the 100 km scale of the mode-1 tide and mesoscale. Modeling
the nonlinear self-interactions presumably requires high vertical resolution to represent the beams
of tidal energy where kinetic energy is concentrated. Another challenge is the lack of detailed data
at the mesoscales; an approach using altimeter data and an assumed modal projection may prove
fruitful; although, Chavanne et al. (submitted for publication-b) find that simulated tidal-mesoscale
interactions depend in detail on the vertical structure of the mesoscale. HFR surface currents are one
of the few sources of oceanic data that resolves the spatial mesoscales while simultaneously resolving
the tidal timescales. Efforts to assimilate these data in the time domain are ongoing.
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