Late Quaternary glacial history and meltwater discharges along the Northeastern Newfoundland Shelf

Jonathan Roger, Francky Saint-Ange, Patrick Lajeunesse, Mathieu J. Duchesne, and Guillaume St-Onge

Abstract: The geomorphology of the Eastern Canadian margin has been shaped by glacial processes during the Quaternary. Many studies have focused on the ice-sediment pathway through Hudson Strait to reconstruct the dynamics of the Laurentide Ice Sheet, and as a consequence, little is known on its marginal ice domes. Here we reconstruct the dynamics of two trough mouth fans (TMFs) offshore NE Newfoundland using sediment cores and radiocarbon ages supported by very high resolution seismic reflection profiles. These two TMFs, namely Notre Dame and Hawke, are fed by two glacial troughs incised in the bedrock. The TMFs show a complete sedimentary sequence from 30 ka BP to the beginning of the Holocene. The sampled sedimentary record on the upper slope extends back to a thick Heinrich event 3 (H3) deposit that corresponds to the end of the maximum extent of the Newfoundland ice dome. Above H3, a thick succession of turbidite deposits (>10 m) observed in both TMFs is correlated with periods of major meltwater supply from 28–29 to 17 ka BP. Our results show that the Last Glacial Maximum (LGM) period was characterized by major input of meltwater events stemming from the Newfoundland dome. The presence of H1 (~17 ka BP) coincides with the end of the turbidite activity which is replaced by an open-water environment characterized by hemipelagic sediments rich in ice-rafted debris. The proglacial muddy sediment older than 13.3 ka BP on the shelf shows that ice was not grounded after H1, suggesting a very rapid retreat of the ice on the Newfoundland shelf after 17 ka BP.

Résumé : La géomorphologie de la marge continentale à l’est du Canada a été modelée par des processus glaciaires lors du Quaternaire. De nombreuses études se sont concentrées sur le transport sédimentaire le long du détroit d’Hudson, permettant ainsi la reconstruction de la dynamique glaciaire de l’Inlandis laurentien. Cependant, la dynamique glaciaire des dômes périphériques n’est que très peu connue. Nous reconstruisons ici la dynamique de deux éventails glaciogéniques (EGs) au large du nord-est de Terre-Neuve à partir de carottes de sédiments et d’âges radiocarbone (14C) appuyés par des profils sismiques à très haute résolution. Les EGs de Notre Dame et Hawke, sont alimentés par deux vallées glaciaires en U taillées dans le socle rocheux. Ces EGs présentent une séquence sédimentaire complète depuis 30 ka avant aujourd’hui (BP) jusqu’au début de l’Holocène. L’enregistrement sédimentaire obtenu sur la partie supérieure du talus continental débute lors de l’événement Heinrich 3 (H3), lequel correspond à la fin de l’étendue maximale du dôme de glace de Terre-Neuve. Au-dessus de H3, une épaisse succession de dépôts turbiditiques (>10 m), observée dans les deux EGs, est corrélée avec des périodes d’eau de fonte abondante de 28–29 à 17 ka BP. Nos résultats démontrent que la période du Dernier Maximum Glaciaire (DMG) était caractérisée par de grands apports d’eau de fonte provenant du dôme de Terre-Neuve. La présence de H1 (17 ka BP) coïncide avec la fin de l’activité turbiditique, laquelle a été remplacée par un environnement d’eaux libres caractérisé par des sédiments hémipelagiques riches en débris délestés transportés par les glaces flottantes. Les sédiments boueux proglaciaires plus anciens que 13.3 ka BP sur la marge continentale indiquent que la glace n’était pas ancrée après l’événement H1, suggérant un retrait très rapide de la glace sur la marge continentale de Terre-Neuve après 17 ka BP.

Introduction

During glaciations, the Newfoundland continental margin has been mainly shaped by successive phases of advance of the Laurentide Ice Sheet that reached the continental slope (Prest 1984; Josenhans et al. 1986; Hiscott et al. 2001; Piper 2005; Shaw et al. 2006). On the shelf, Notre Dame and Hawke troughs (Fig. 1) cut into the underlying bedrock from the shore to the shelf edge and are believed to have carried fast-flowing ice streams during the last glacial period (Shaw et al. 2006; Deptuck et al. 2007; Tripsanas and Piper 2008a). Each of these troughs is connected to broad glaciogenic fans (Deptuck et al. 2007). Sediments that formed the two trough mouth fans (TMFs) were transported to these slopes off the margin by glaciers that were sitting in the troughs (Deptuck et al. 2007; Tripsanas and Piper 2008a; Li et al. 2012). Few thin brownish and ice-rafted debris (IRD) rich deposits mainly from Hudson Bay and associated with Heinrich events, which correspond to major meltwater events, have been deposited along the continental margin (Hesse and Khodabakhsh 1998; Andrews et al. 1993, 1999; Tripsanas and Piper 2008a). TMFs are generally characterized by stacked glaciogenic debris flows (GDFs) exclusively formed during the Last Glacial Maximal (LGM) when ice sheets advanced to the shelf edge (Deptuck et al. 2007; Tripsanas and Piper 2008a). Most of the TMFs are covered by turbidite deposits and often incised by several canyons and gullies (Tripsanas and Piper 2008a).
Until recently, the region offshore NE Newfoundland was one of the least explored sectors of the Eastern Canadian margin. This paper aims to reconstruct the Late Wisconsinan glacial history of Hawke and Notre Dame TMFs by the integration of very high seismic reflection profiles and sedimentary records. Very high seismic reflection data were used to characterize the morphology and the stratigraphic context while the sedimentological data have been used to identify sediment transport processes and sources. From these observations, a better understanding of the dynamics of TMFs off the Notre Dame and Hawke glacial troughs since the LGM has been established.

Regional setting

Geological setting

The study area is located along the shelf and the continental slope off Newfoundland between Orphan Spur and Hamilton Spur (Fig. 1). The depth of the NE Newfoundland Shelf ranges from 200 m below sea level (mbsl) at Hamilton Bank to 500 mbsl in the deepest parts of the Notre Dame and Hawke troughs. The continental slope extends from the shelf break at 200–500 mbsl to the continental rise at 3400 mbsl. The continental slope is ~120 km wide, with an average gradient of ~1.4°, greater on the upper slope (2°–3°), decreasing to 1° on the lower slope. Bedrock geology of the NE Newfoundland Shelf is complex but well delimited (Fig. 2). The northern part of the Gulf of St. Lawrence, Strait of Belle Isle, and parts of Southern Labrador Shelf are dominated by Lower Paleozoic gray limestone with high inorganic carbon (I.C.) values (Piper and DeWolfe 2003; Tripsanas and Piper 2008a). The northern part of the inner NE Newfoundland Shelf around St. Anthony Basin is mainly formed of Upper Paleozoic (Carboniferous) reddish sandstone (Fader et al. 1989), with high organic carbon (O.C.) contents. The outer continental shelf is covered by a

![Fig. 1. Regional location map of the study area on the Labrador Margin. Dashed lines correspond to the limit of Notre Dame and Hawke Trough Mouth Fans (TMFs), bold lines to available seismic data, arrows to the ice stream direction, and circles to the cores used in this study. Core 023-19 is from Mudie and Guilbault (1982), and cores 033-24 and 033-19 are from Tripsanas and Piper (2008a). (See online version for color.)](image)
thick Cretaceous–Tertiary sedimentary succession (Fader et al. 1989). The Cretaceous–Tertiary succession has a high content of frosted quartz and fine-grained calcareous sandstone (Piper and DeWolfe 2003). The marine extension of the Mesoproterozoic Grenville orogen of the Canadian Shield comprises high-grade metamorphic rocks intruded by both mafic and felsic plutons (Hall et al. 1999). The central mobile belt of Newfoundland comprises mostly low-grade metamorphic and volcanic rocks of Early Paleozoic age, many with high magnetic susceptibility (Fig. 2; Williams 1995).

Glacial history

The Quaternary history of the NE Newfoundland Shelf is not well constrained, but several studies have suggested that the ice sheets reached the shelf break during the Wisconsinan (Josenhans and Fader 1989; Dyke et al. 2002; Shaw et al. 2006). On the shelf, Notre Dame, Hawke, and Trinity troughs were cut into the underlying bedrock from the shore to the shelf edge by fast-flowing ice streams during the last glacial period (Figs. 1, 2; Shaw et al. 2006). Each of these troughs is connected seawards to broad glaciogenic fans whose sediments were transported to the shelf break by the ice streams (Deptuck et al. 2007; Tripsanas and Piper 2008a; Li et al. 2012). In Orphan Basin, seaward of Trinity Trough, the Trinity TMF is characterized by stacked glaciogenic debris flows (GDFs) formed during the successive ice stream retreat and readvance to the shelf edge (Tripsanas and Piper 2008b). A large part of the TMF is covered with turbidite deposits related to meltwater events that periodically incised multiple valleys and gullies (Tripsanas and Piper 2008b; Li et al. 2012). Eight periods of major and minor meltwater discharges were identified during the Late–Middle Wisconsinan. The oldest event is dated at 27.5–28.5 cal ka BP and assigned as a Late–Middle Wisconsinan glacial advance followed by three minor periods of readvance at 25–27, 24.5–23.5, and 23–23.8 ka BP. Four more meltwater discharges and calving events occurred during the deglaciation at 20.8, 19.8, 18.5, and 15 ka BP (Tripsanas and Piper 2008a).
On the Labrador Shelf to the north, a basal till unit covers the entire continental shelf and corresponds to the maximum extent of glacial ice during the Middle Wisconsinan. A second, overlying till unit is restricted to marginal and transverse depressions which are overlain by a succession of glaciomarine sediments dated between 23 and 8.3 14C ka BP (Josenhans et al. 1986; Zevenhuizen and Josenhans 1987; Josenhans and Fader 1989).

Material and methods

A total of 525 km of Hunttec Deep Tow System (DTS) seismic lines was collected in 2010 aboard the CCGS Hudson. The Hunttec DTS was used in boomer mode on the shelf while the sparker mode was used in deep water where higher energy levels are needed to resolve the shallow sub-seafloor. Seismic-to-core ties were accomplished with the aid of synthetic seismograms. Bulk density (ρ), P-wave velocity (v_p), and magnetic susceptibility values obtained from a multi-sensor core logger Geotek (MSCL) were used to generate the wavelets to convolve reflection coefficient series modeled from the seismic data. All of these steps were performed using the SynPAK module of The Kingdom Suite 8.5 software. Sediment thickness estimations were calculated using an average v_p of 1500 m/s.

Six piston cores (PC) collected on both fans were used in this study. The cores were split lengthwise, photographed with a digital camera, and detailed visual sedimentological descriptions were made. Color was measured at a 5 cm interval using a Minolta chroma-meter, and detailed visual sedimentological descriptions throughout the Labrador and Newfoundland margins (Andrews and Tedesco 1992; Wang and Hesse 1996; Hesse et al. 1997; Rashid et al. 2003; Tripsanas and Piper 2008a; Saint-Ange et al. 2013).

Results

Morphology

Notre Dame TMF is ~200 km long and ~100 km wide, while Hawke TMF is shorter with a similar width (Fig. 1). A maximum Quaternary sediment thickness of ~375–525 m (650 ms) has been estimated for the Notre Dame TMF and ~225–300 m (500 ms) for the Hawke TMF from airgun seismic data (Deptuck et al. 2007). The thickness of each fan decreases downslope and strata is thinning seaward to pinch out at the base of the continental slope (Figs. 3, 4). The internal stratigraphy of both TMFs is characterized by a succession of continuous stacked GDFs as well as several isolated thick transparent units interpreted as mass transport deposits (MTDs; Fig. 4). Laterally, the Notre Dame TMF abruptly ends with two escarpments of 150–200 m high (Fig. 3a), whereas the Hawke TMF ends in a progressive manner, with layers pinching out toward a marginal valley (Fig. 3b).

<table>
<thead>
<tr>
<th>Core</th>
<th>Core depth (cm)</th>
<th>Quartz raw area cps x 20 ($^\circ$)</th>
<th>Calcite raw area cps x 20 ($^\circ$)</th>
<th>Dolomite raw area cps x 20 ($^\circ$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>023-16 (PC)</td>
<td>138</td>
<td>899.1</td>
<td>75</td>
<td>132.2</td>
</tr>
<tr>
<td>023-16 (PC)</td>
<td>566</td>
<td>712.1</td>
<td>145.1</td>
<td>87.7</td>
</tr>
<tr>
<td>023-20 (PC)</td>
<td>364</td>
<td>838.3</td>
<td>96.33</td>
<td>73.5</td>
</tr>
<tr>
<td>023-20 (PC)</td>
<td>775</td>
<td>662.9</td>
<td>124.3</td>
<td>81.7</td>
</tr>
<tr>
<td>023-22 (PC)</td>
<td>255</td>
<td>642.2</td>
<td>101.6</td>
<td>68.4</td>
</tr>
<tr>
<td>023-22 (PC)</td>
<td>697</td>
<td>639.1</td>
<td>129.8</td>
<td>98.2</td>
</tr>
<tr>
<td>023-26 (PC)</td>
<td>527</td>
<td>1243</td>
<td>18.3</td>
<td>98.2</td>
</tr>
<tr>
<td>023-26 (PC)</td>
<td>837</td>
<td>857.3</td>
<td>49.5</td>
<td>88.4</td>
</tr>
<tr>
<td>023-29 (PC)</td>
<td>257</td>
<td>606.7</td>
<td>93.1</td>
<td>61.1</td>
</tr>
<tr>
<td>023-29 (PC)</td>
<td>773</td>
<td>747.3</td>
<td>102.6</td>
<td>107.8</td>
</tr>
<tr>
<td>023-32 (PC)</td>
<td>596</td>
<td>758.1</td>
<td>133.8</td>
<td>83.9</td>
</tr>
<tr>
<td>023-32 (PC)</td>
<td>932</td>
<td>536.1</td>
<td>144.9</td>
<td>83.3</td>
</tr>
<tr>
<td>023-32 (PC)</td>
<td>1091</td>
<td>545</td>
<td>82</td>
<td>75.9</td>
</tr>
</tbody>
</table>

Channel-levee

Seismic data show a well-developed channel-levee system on top of the fans, situated toward the edges (Fig. 5). Channel depth varies from 30 to 120 m (Fig. 5) and are best developed on Notre Dame TMF and the southern part of Hawke TMF. The two TMFs are separated by a 60 km long zone of gullied slope (Appendix S1) passing downslope into stacked acoustically transparent units.

Sediment lithology

Twelve lithofacies were identified based on sedimentary structures and lithologic characteristics (Fig. 6). The facies classification used in this study builds on previous work accomplished throughout the Labrador and Newfoundland margins (Andrews and Tedesco 1992; Wang and Hesse 1996; Hesse et al. 1997; Rashid et al. 2003; Tripsanas and Piper 2008a; Saint-Ange et al. 2013).

Core 16PC

Core 16PC was retrieved on the crest of a canyon levee on the upper slope of Notre Dame TMF (Fig. 1). The lower ~2.5 m of the core is a weakly stratified brownish diamict (Fig. 7). The sediment color is pale tan and relatively uniform, with a mean L* value around 50. The magnetic susceptibility shows variations ranging from 192 × 10$^{-5}$ to 330 × 10$^{-5}$ SI (Appendix S2). A ~10 cm thick grayish unit rich in IRD discernible by its dark gray color interbeds with this laminated facies and has low magnetic susceptibility values ranging from 37 × 10$^{-5}$ to 109 × 10$^{-5}$ SI (Fig. 7; Appendix S4). The uppermost metre of the core is composed of clay–silt laminae rich in IRD, but the amount of IRD diminishes upward (Fig. 7; Appendix S5).

Core 32PC

Core 32PC was retrieved on the southeastern edge of the Notre Dame TMF, in a stratified ridge (Figs. 1, 5c). It mainly consists of a succession of rhythmic dark brownish to brownish mud and silt laminae (Appendix S6) interstratified with grayish to greenish mud that is rich in IRD (Fig. 7). At the base...
of the core, a poorly sorted light-brown unit rich in coarse-grained sediment (>125 μm = 80%) has high I.C. and low magnetic susceptibility values (Appendix S7). This unit occurs as an interval between laminated sand turbidites with climbing ripple cross-laminations (Appendix S8) and laminated mud turbidites with sparse IRD. Laminated mud turbidites are characterized by a dark brownish rhythmic succession of mud and silt laminae (1 mm – 2 cm thick; grain size <125 μm = 82%), gradually changing upward to a brownish succession of clay–silt laminae (1 mm – 5 cm thick). This change is also observed along the magnetic susceptibility profile but not in the L* values (Fig. 7). The interval between 600 and 175 cm is characterized by a rhythmic succession of mud and silt laminae interstratified every ~1 m by a gray mud unit rich in IRD. The top of the core is composed of a

Table 2. Accelerator mass spectrometer 14C conventional and calibrated ages.

<table>
<thead>
<tr>
<th>Core</th>
<th>Core depth (cm)</th>
<th>Material dated</th>
<th>Sample identification number</th>
<th>Conventional radiocarbon age (years BP)</th>
<th>Calibrated age (cal BP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>023-11PC</td>
<td>300–302</td>
<td>Foraminifera</td>
<td>UCIAMS-96126</td>
<td>11765±25</td>
<td>13.1±338</td>
</tr>
<tr>
<td>023-11PC</td>
<td>695–698</td>
<td>Shell</td>
<td>UCIAMS-90069</td>
<td>12030±35</td>
<td>13.3±219</td>
</tr>
<tr>
<td>023-16PC</td>
<td>566–568</td>
<td>Foraminifera</td>
<td>UCIAMS-90059</td>
<td>24920±130</td>
<td>29.2±10</td>
</tr>
<tr>
<td>023-22PC</td>
<td>608–611</td>
<td>Foraminifera</td>
<td>UCIAMS-90067</td>
<td>17280±60</td>
<td>19.9±16</td>
</tr>
<tr>
<td>023-22PC</td>
<td>695–698</td>
<td>Foraminifera</td>
<td>UCIAMS-90060</td>
<td>18130±60</td>
<td>20.9±30</td>
</tr>
<tr>
<td>023-22PC</td>
<td>851–854</td>
<td>Foraminifera</td>
<td>UCIAMS-90064</td>
<td>19140±70</td>
<td>22.2±50</td>
</tr>
<tr>
<td>023-26PC</td>
<td>159–161</td>
<td>Foraminifera</td>
<td>UCIAMS-96131</td>
<td>13805±50</td>
<td>16.3±15</td>
</tr>
<tr>
<td>023-26PC</td>
<td>836–839</td>
<td>Foraminifera</td>
<td>UCIAMS-90066</td>
<td>17950±60</td>
<td>20.8±28</td>
</tr>
<tr>
<td>023-26PC</td>
<td>1012–1015</td>
<td>Foraminifera</td>
<td>UCIAMS-90061</td>
<td>18810±50</td>
<td>21.8±66</td>
</tr>
<tr>
<td>023-27PC</td>
<td>26–29</td>
<td>Foraminifera</td>
<td>UCIAMS-90063</td>
<td>21740±90</td>
<td>25.3±71</td>
</tr>
<tr>
<td>023-32PC</td>
<td>470–473</td>
<td>Foraminifera</td>
<td>UCIAMS-90068</td>
<td>17920±60</td>
<td>20.7±32</td>
</tr>
<tr>
<td>023-32PC</td>
<td>596–599</td>
<td>Foraminifera</td>
<td>UCIAMS-90062</td>
<td>18830±70</td>
<td>21.8±67</td>
</tr>
<tr>
<td>023-32PC</td>
<td>1041–1044</td>
<td>Foraminifera</td>
<td>UCIAMS-90065</td>
<td>21820±90</td>
<td>25.4±80</td>
</tr>
</tbody>
</table>

Note: Conventional radiocarbon years with 2σ determined from the software Calib 6.0: http://calib.qub.ac.uk/calib/calib.html.

Fig. 3. Airgun profiles across the middle part of the continental slope. Seismic line is located on Fig. 1. (a) Airgun seismic profile across the middle part of Notre Dame TMF exposing the fan which is incised by several gullies and valleys. Arrows point to the probable seismic reflection corresponding to the top of preglacial bedrock. (b) Airgun seismic profile across the middle part of Hawke TMF showing a lobate fan incised by a few valleys.
brownish to grayish IRD-rich hemipelagic unit (>125 μm = 44%; Appendix S9). The basal part of this unit shows a sharp decrease of the a* and a gradual increase of the L* from 35 to 5 cm, both of which are matched by an increase in the magnetic susceptibility value up to 400 × 10⁻⁵ SI (Fig. 7).

Core 27PC
Core 27PC was retrieved from a thin acoustically transparent unit interpreted as a GDF, located on the upper slope of Hawke TMF (Figs. 1, 4; Appendix S10). It consists of a dark brownish unstratified diamict in which coarse grains (>2 mm) are mixed with a clay–silt matrix overlain at the top by an IRD-rich hemipelagic facies similar to what is observed in the upper part of the cores described earlier in the text (Fig. 8).

Core 22PC
Core 22PC was retrieved from a broad intercanyon ridge on the upper slope of Hawke TMF (Figs. 1, 5a). It is characterized by a rhythmic succession of clay and silt laminae or silt and sand laminae interstratified with IRD-rich gray mud units (Fig. 7). The gray mud units with IRD are correlated with peaks of L* and high magnetic susceptibility values. A rhythmic succession of brownish silt (53%) and sand (28%) laminae interstratified with climbing ripple cross-laminations and dark brown massive sand beds suggests turbidite intervals (Appendix S11). Here, the IRD content in the turbidites gradually increases towards the top of the units below the gray mud units. The magnetic susceptibility is very low, with a maximum value of 114 × 10⁻⁵ SI. L* and magnetic susceptibility values allow distinction of two hemipelagic units at the top of the core. The lower of these two units shows a high a* value and a fraction >125 μm with a low magnetic susceptibility (Fig. 7).

Core 26PC
Core 26PC was retrieved on a broad canyon levee on the lower slope of Hawke TMF (Figs. 1, 5b). It consists of a dark brown to brownish rhythmic succession of silt and sand laminae interstratified with gray mud units rich in IRD (Fig. 7). Turbidites are rich in silt (57%) and sand (31%). Climbing ripple cross-laminations and massive sand beds are observed below 220 cm. From 215 to 195 cm, an IRD-rich brownish silty mud unit without apparent structure is characterized by an increase of a* and L* values, a weak magnetic susceptibility signal, and a coarse-grained fraction...
Fig. 5. Huntec DTS seismic profiles with core locations: (a) 023-22PC; (b) 023-26PC; (c) 023-32PC. The instantaneous amplitude display is used to enhance contrasts between reflections.
Fig. 6. Characteristics of the sedimentological facies. From left to right: X-radiographs, photographs, facies identification, sedimentary structure descriptions, facies legend, and environments of deposition. (See online version for color.)

<table>
<thead>
<tr>
<th>X-ray</th>
<th>Photo</th>
<th>Facies</th>
<th>Sedimentary structures</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Homogeneous mud without IRD</td>
<td>Bioturbated grayish to greenish mud without IRD. No apparent structures are observed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gray mud with IRD</td>
<td>Bioturbated grayish to greenish mud with IRD. No apparent structures are observable.</td>
<td>Distal in an open-water environment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hemipelagic with IRD</td>
<td>Bioturbated brownish to grayish silty mud rich in IRD. No apparent structures are observable.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Massive sand beds</td>
<td>Dark brown sand intervals varying between 4 cm and 20 cm without apparent structures.</td>
<td>Proximal to distal in an ice-free environment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laminated facies rich in IRD</td>
<td>Rhythmic succession of sand-mud-IRD layers. Color varying from brownish for the sand to grayish for the IRD-rich layers.</td>
<td>Proximal in an open-water environment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IRD-rich carbonate bed</td>
<td>Poorly or non-sorted brown grayish sediment. Coarse-grained sediment (≥2 mm) mixed with a fine-grained matrix.</td>
<td>Distal in an open-water environment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unstratified diamict</td>
<td>Unstratified dark brownish diamict. Coarse-grained sediment (≥2 mm) mixed with a fine-grained matrix.</td>
<td>Proximal in an ice environment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Complex Diamict</td>
<td>Weakly stratified brownish diamict with a concentration of granules and pebbles less substantial than the glaciogenic debris flow. Coarse-grained sediment (≥2 mm) mixed with a fine-grained matrix.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laminated mud turbidites</td>
<td>Dark brownish rhythmic succession of mud and silt laminae (1mm to 2cm).</td>
<td>Proximal to distal in an ice-free environment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laminated sand turbidites</td>
<td>Brownish rhythmic succession of silt and sand laminae (1mm to 5cm).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Climbing ripple cross lamination in silt or fine sand</td>
<td>Climbing ripple cross lamination without IRD or with scattered IRD. Grain size varying from silt to sand.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mud or sand turbidites with IRD</td>
<td>Dark brownish rhythmic succession of mud laminae (1mm to 2cm). Sparse IRD are present.</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 7. Logs of cores from the continental slope. Lithology logs correlated with a* value (green to red), L* (black to white), magnetic susceptibility (Mag Susc) signal (SI), percent of inorganic and organic carbon content (I.C. and O.C., respectively), and sediment fraction >150 μm (IRD). Small arrows along the logs indicate where 14C AMS ages were obtained.
The complex diamict in core 16PC shows weak laminations interstratified with an IRD-rich matrix. This complex diamict has rocks, common throughout the land area of central Newfoundland (Wheeler et al. 1997).

The inorganic and organic carbon appears to be an excellent proxy to constrain our correlation between the different facies observed and the sediment source. Turbidites in core 32PC off Notre Dame Trough are characterized by high O.C. values up to 2% and low I.C. values. The O.C and I.C. content are lower in cores 11PC and 26PC off Hawke Saddle, where O.C. values are below 2%. The gray mud units rich in IRD show an opposite pattern, with higher I.C. values (2%) and higher L* values, which is a manifestation of substantial concentrations of dolomite and calcite based on XRD analyses (Table 1). The XRD data show that most of the IRD-rich gray mud units comprise a higher percentage of calcite, except for core 26PC where dolomite is responsible for the gray color (Table 1). The gray mud units consist mostly of grains derived from gray limestones distributed across the northern Gulf of St. Lawrence and Northwest Newfoundland (Fig. 2) and are distinct from the dominant light brownish–beige carbonates likely derived from Paleozoic limestones from Hudson Bay – Hudson Strait (Andrews et al. 1994; Piper and DeWolfe 2003).

Sedimentary units and timing of their deposition

Glaciogenic debris flows (GDFs)

The dark brownish unstratified diamict deposit found in core 27PC is characterized by uniform physical properties and a very transparent acoustic character. All of these characteristics are associated with GDF deposits elsewhere on the eastern Canadian margin (Rashid and Piper 2007; Tripsanas and Piper 2008a). GDFs are common along glaciated margins and constitute a major process in the building of TMFs (Tripsanas and Piper 2008a; Li et al. 2012). These deposits are formed mostly during maximal advance or readvance of ice streams and (or) ice sheets to the shelf edge. Because of their similarity to till deposits on the shelf, they have been interpreted to originate from the failure of till supplied to the upper continental slope by advancing glaciers (King et al. 1996; Dimakis et al. 2000; Tripsanas and Piper 2008a). The age of the GDF is constrained by an immediately overlying calibrated radiocarbon age of 23.5 ka BP.

Heinrich layers

The complex diamict in core 16PC shows weak laminations interstratified with an IRD-rich matrix. This complex diamict has...
been correlated to a weakly stratified seismic unit (Appendix S12). Together, these characteristics exclude the debris flow as a possible deposit since typical GDFs have no apparent internal structures in cores and are characterized by a transparent facies in seismic data. This complex diamict is characterized by interspaced concentration of granules and pebbles, suggesting a cyclical and proximal sediment supply. The light brownish color (L* = 50) and the high I.C. content (2.5%) are related to a carbonate-rich sediment source (Fig. 2). On the basis of the age obtained at the top of the unit (29.9 ka BP) and the physical properties noted earlier in the text, this weakly stratified diamict is associated with Heinrich event 3 (H3) (Hesse and Khodabakhsh 1998).

In core 32PC, a 5 cm thick unit of light brownish sediments with distinct I.C. peak, low magnetic susceptibility, and rich in IRD is dated at 25.4 ka BP. Similar deposits were observed along the Labrador and Newfoundland coast which were associated to H2 (Andrews and Tedesco 1992; Dowdeswell et al. 1995; Hesse and Khodabakhsh 1998; Bond et al. 1999). All the other cores, except for core 16, record sedimentation younger than H2, with a maximum age ≈22 ka BP based on radiocarbon ages (Fig. 8). Core 16PC does not show H2, but an unconformity is interpreted in the core above H3.

The detrital-carbonate bed observed at 200 cm in core 26PC is interpreted to be Heinrich event 1 (H1), based on the high detrital carbonate and an overlying radiocarbon age of 16 ka BP (Table 2). In contrast with H2, H1 is observed in the top part of every core within the hemipelagic deposits capping the turbidites.

Two carbonate–IRD rich layers are observed on the shelf in core 11PC but are not precisely dated (Fig. 10). Based on the age obtained at the base of the core, they correspond to early Holocene meltwater events originating from Hudson Strait, also identified elsewhere in this area (Andrews and Tedesco 1992; Hemming 2004; Tripsanas and Piper 2008a; Lewis et al. 2012). The age at ≈13 ka BP near the base of the core as well as the sharp decrease of the magnetic susceptibility signal and the change of facies from sand stratified to silty-clay non-stratified (Fig. 9) suggest a shift in sediment processes from deep water to the shelf, implying that the shelf became ice-free at the time of H1 or shortly after.
Turbidite deposits and their significance

Turbidity currents are gravity-driven density currents and are the main process by which sediments are transferred downslope to the deep ocean. Although numerous types of processes lead to turbidity currents such as slope failures, storms, or earthquakes (Piper and Normark 2009), large volumes of rhythmic turbidites along glaciated margins are essentially related to subglacial outburst (Dowdeswell et al. 1998; Hesse et al. 2001; Piper et al. 2007; Toucanne et al. 2008; Tripsanas and Piper 2008a). Turbidite deposits have been used only recently as a proxy for meltwater events (Piper et al. 2007; Toucanne et al. 2008; Tripsanas and Piper 2008a; Li et al. 2012; Rashid et al. 2012; Toucanne et al. 2012). Nevertheless, earlier works have attracted attention to the significance of turbidites along glacial margins and their potential as a proxy to understand and constrain ice stream behaviour and source of meltwaters (Wang and Hesse 1996; Hesse and Khodabakhsh 1998; Dowdeswell et al. 1998; Vorren et al. 1998; Skene and Piper 2003; Zaragosi et al. 2006).

As in the cited studies discussed earlier in the text, rhythmic turbidites are the predominant sedimentary facies in our area (Figs. 7, 11) and are used as a proxy for meltwater delivery. The sedimentation rate curves show that turbidite activity related to meltwater began shortly after H3 (~28–29 ka BP). From 29 ka BP to ~21 ka BP, the number of beds per unit time and the mean sedimentation rate raise what suggests an increase of the turbidite activity. This time period is followed by a decrease of the turbidite activity for about 1 ka, which is followed by a drastic increase of the turbidite activity during which sedimentation rate varies from 130 cm/ka (32PC) up to 310 cm/ka (26PC) (Fig. 12). The turbidite climax abruptly ends just before H1 (Figs. 12, 13). Between H2 and H1, turbidite activity was particularly intense, with an average sedimentation rate of 127 cm/ka (Fig. 12). The turbidite sequences between H3 and H2 are not complete in our record, but by correlation with Orphan Basin cores (Tripsanas and Piper 2008a), we estimate the sedimentation rate of about 100 cm/ka, which is in the same order of the sedimentation rate between H2 and H1. Very similar records are observed in Orphan Basin (Tripsanas and Piper 2008a) and in the Bay of Biscay on the European margin (Zaragosi et al. 2006; Toucanne et al. 2012).

A general stratigraphic timing and thickness pattern is recognized in the turbidites. Thick units of stacked turbidites alternate every 1000 years with thin hemipelagic gray mud layers (Fig. 11). The thickness of the gray muds associated with the presence of substantial foraminifer concentration and bioturbation are interpreted as temporary cessations in turbidite accumulation (Skene and Piper 2003). The thin gray mud deposits retrieved in Laurentian Fan, which were supplied by the same ice sheet (Skene and Piper 2003). Therefore, as turbidites are related to the massive delivery of meltwater, the turbidite intervals could correspond to short warmer periods (Fig. 10a), and the gray mud intervals could correspond to longer cooler periods with no production of meltwater (Fig. 10b).
Fig. 11. Correlation of slope cores to show millennial-scale cyclicity in turbidite deposition. Core logs correlated with a^* value (green to red), L^* (black to white), magnetic susceptibility signal (SI), percent of inorganic and organic carbon content (I.C. and O.C., respectively), and sediment fraction >150 μm (IRD). Small arrows along the logs indicate the location of 14C AMS ages obtained. Gray lines highlight the correlations established between the cores on the basis of the grayish hemipelagic facies. They have a ca. 1.1 ka periodicity (double arrows at right).
The correlations established in Fig. 11 show that, for a given interval of time, the thickness of the turbidite unit remains mostly the same on both TMFs. The similarities in timing and sedimentation rates in both TMFs as well as in the Orphan Basin sedimentary records (see fig. 9 in Tripsanas and Piper 2008a) suggest that the behaviour of the glaciers corresponds to a regional process that we interpret as being the instability of the Newfoundland ice dome. An important observation is the presence of H2 in core 32PC (Fig. 11), which indicates that iceberg calving and meltwater discharges from Hudson Strait were occurring at a time when the Newfoundland ice dome was not producing meltwater.

One might argue that this well-defined millennium cycle could correspond to the Dansgaard–Oeschger (D–O) cycles of rapid climate fluctuations, which occur in distinct 1–2 ka intervals (Dansgaard et al. 1993). The issue here is that an excessively short period of time is recorded in the cores due to the very high sedimentation rates. Indeed, it is unknown if this stratigraphic cycle exists prior to H3. Whether or not this millennial cyclicity corresponds to D–O cycles requires additional sampling, and more detailed work needs to be done on the significance of the gray muds.

Late glacial history of the Newfoundland ice dome

To reconstruct the late glacial history of the Newfoundland ice dome, we combined our dataset with published data from the Orphan Basin and Newfoundland inner shelf (see Fig. 1 for location). The sedimentary record obtained from the cores on the NE Newfoundland Slope allows some reconstruction of the glacier dynamics from 30 ka BP. The turbidite deposits indicate brief punctuated meltwater discharges separated by longer periods of turbidite inactivity as indicated by the grayish muds (Fig. 10). Therefore, we can propose the following glacial history for the past 30 ka BP.

Ice margin limit from ~30 to ~25 ka BP

Based on the age of the GDFs, the complex diamict observed in Notre Dame TMF (16PC), and the age of the GDFs in Orphan Basin (Tripsanas and Piper 2008a), an ice margin was established at the shelf break at ~30 ka BP (Fig. 13). Based on cores 16PC and 32PC (Figs. 10, 12), turbidite activity began shortly after H3, probably around 28–29 ka BP. Our observation is consistent with what is observed in Orphan Basin where turbidite activity started around 28.5 ka BP (Tripsanas and Piper 2008a). The turbidites immediately overlying H3 are reddish sandy-silty deposits, whereas younger turbidites are rather brownish silt or clay.

Ice margin limit from ~25 to ~22 ka BP

Above H2 in core 32PC, a 470 cm thick turbidite sequence interstratified with two gray mud units terminates at 21.8 ka BP. This age matches the age of the lowest gray mud unit in core 22PC (22.2 ka BP) and 26PC (21.8 ka BP). Around 23.5 ka BP, the TMFs record two distinct sedimentary deposits: turbidites in Notre Dame TMF (32PC) and GDFs and turbidites in Hawke TMF (27PC) (Figs. 8, 12). Similar turbidite deposits and GDFs were identified in Trinity Trough and the southern sector of Orphan Basin that have been dated at 23.8–24.5 ka BP (Tripsanas and Piper 2008a).

The reddish turbidites observed in core 32PC with a high a* value suggest that Notre Dame TMF was fed during this specific period by a southern ice stream cutting through Upper Paleozoic red sandstones and siltstones (Fig. 2). The same type of sediment has been recorded in Orphan Basin (Tripsanas and Piper 2008a),
suggesting that both Trinity and Notre Dame Troughs were fed by the same source at this time. Reddish turbidites were mainly observed between 25 and 22 ka BP in cores 32PC (Fig. 11). After this period, the sediment color throughout the entire area remained the same until a drastic decrease of a*, suggesting a migration of the meltwater source toward the continental margin where no reddish sediment source is available (Fig. 13). Sediment records from Notre Dame TMF show more variation in the source of sediment than the Hawke TMF, which is probably related to a more complex fluctuation of the ice stream related to its dividing point around Funk Island Bank (Fig. 1).

Ice margin limit from ~22 to ~17 ka BP

Turbidite activity increased substantially during the LGM to H1 (Fig. 12), suggesting an acceleration of the melting of the Newfoundland ice dome. In all cores, sediment is composed of dark brown turbidites interstratified with the gray muds. Correlation between cores shows that the sedimentation rate for this time span is consistent among cores, with an average sedimentation rate of ~130 cm/ka (Fig. 12). Similar chocolate-brown mud turbidites dated at 20.5–21.1 ka BP observed in Orphan Basin have been associated to direct sediment supply from NE Newfoundland and also interpreted as due to an increase of meltwater discharge (Tripsanas and Piper 2008a). Such observations suggest a near-synchronous and progressive retreat of the ice streams between Hawke and Notre Dame TMFs and also throughout Orphan Basin (Fig. 13). The decrease in magnetic susceptibility and the increase in organic carbon from 22 to 20 ka BP is interpreted to be the result of a seaward migration of the meltwater sources over Cretaceous–Tertiary sedimentary bedrock (Figs. 2, 13). The significant amount of meltwater recorded during this short period of time and the signature of the sediment suggest a massive melting of the ice on the shelf.

Ice margin limit at ~17 ka BP

The presence of H1 (~17 ka BP) in the cores coincides with the end of the turbidite activity (Figs. 11, 13). The proglacial muddy sediment older than 13.3 ka BP on the shelf shows that the ice was not grounded after H1. The presence of IRD in different carbonate-rich units suggests that a significant portion of the shelf was
roger et al. 1193

