Environmental changes in Baffin Bay during the Holocene based on the physical and magnetic properties of sediment cores

MARIE-PIER ST-ONGE1,2* and GUILLAUME ST-ONGE1,2

1Canada Research Chair in Marine Geology, Institut des sciences de la mer de Rimouski (ISMER), Université du Québec à Rimouski, Rimouski, Canada
2GEOTOP Research Center

Received 3 November 2012; Revised 27 September 2013; Accepted 15 October 2013

ABSTRACT: The physical and magnetic properties of four long sediment cores (HU2008-029-034PC, -038PC, -042PC and -070PC) sampled in Northern (Smith Sound and Jones Sound) and Eastern (Disko Bugt) Baffin Bay were analysed to reconstruct the Holocene environmental changes in Baffin Bay. Radiocarbon dating of each core revealed sedimentation rates of up to 136 cm ka⁻¹. Except for specific intervals, magnetic properties and ratios reveal that the magnetic remanence is mostly carried by magnetite and that changes in magnetic grain size and concentration are indicative of environmental variations associated with ice-rafted debris, sea-ice, meltwater pulses or terrigenous inputs. These variations indicate that all four cores, which cover a period from 12 360 cal a BP to the present, have sedimentary facies that correspond to the major climatic changes of the Holocene: deglaciation and the climatic optimum. In addition, two cores (HU2008-029-038PC and -070PC) present the signal of two climatic events with a local influence during the Neoglacial period. Copyright © 2013 John Wiley & Sons, Ltd.

KEYWORDS: Baffin Bay; deglaciation; Disko Bugt; Holocene; magnetic mineralogy; Neoglaciation; paleoceanography; sedimentology; western Greenland.

Introduction

The Baffin Bay region is a pathway for Arctic fresh waters and ice to the North Atlantic Ocean that play a crucial role in global oceanic circulation and climate (Holland et al., 2001; Tang et al., 2004). The modern pattern of circulation in the North Atlantic Ocean appeared during the Early Holocene, particularly with the opening of the Nares Strait in northeasternmost Baffin Bay at 9000 cal a BP (Jennings et al., 2011). During the Holocene, the connection between the Arctic and Atlantic Oceans probably triggered local and global environmental changes, marked by associated sediment signatures (Miller et al., 2003; Jennings et al., 2011; Wanner et al., 2011).

Further south, Disko Bugt is a key area for recording environmental changes associated with Greenland glaciers and changes in the West Greenland Current (WGC), which is a mixture of the warm Irminger current and the cold East Greenland current (Andersen, 1981; Tang et al., 2004; Lloyd, 2006; Ribergaard et al., 2008; Krawczyk et al., 2010). Research on the influence of glaciers and ocean current variations upon sedimentation is crucial because it is very hard to find unequivocal evidence of the response of sea-ice margins to specific climatic changes (Lloyd, 2006; O’Cofaigh et al., 2013).

In this rich context of environmental complexity, paleoceanographic data from northern and southern Baffin Bay could be used to determine whether the Holocene climatic events were of local or regional extent (Jennings, 1993; Levac et al., 2001; Knudsen et al., 2008; Jennings et al., 2011; O’Cofaigh et al., 2013). The physical and magnetic properties of marine sediments can record these changes at a high temporal resolution (Jennings, 1993; Francus, 2004; St-Onge et al., 2007; Knudsen et al., 2008).

In this paper, using the high-resolution physical and magnetic properties of four piston cores, we will describe and interpret the sedimentary units associated with environmental changes during the Holocene in northern Baffin Bay and offshore Disko Bugt. Our results provide a picture of the changes during the Holocene and highlight local particularities in the studied areas.

Geological and Environmental Setting

Baffin Bay is located between north-eastern Canada and western Greenland (Fig. 1). It is 450 km wide and 1300 km long (Aksu and Piper, 1987), and it connects the Arctic and North Atlantic Oceans via Nares Strait, Lancaster Sound and Jones Sound (Tang et al., 2004). Sediment transport is affected by fresh meltwater flux from land, icebergs and seasonal pack ice (Holland et al., 2001; Tang et al., 2004; Perner et al., 2011). The dominant current, consisting of cold Arctic water, flows from west to east in Jones Sound and from north to south in Smith Sound (Tang et al., 2004). The northern part of Baffin Bay can provide important paleoclimate data due to the meeting of the WGC and polar waters from the Arctic Ocean (Tang et al., 2004; Knudsen et al., 2008).

Disko Bugt is a large marine embayment (Kelly and Lowell, 2009). The area is of particular interest because of the proximity of the Jakobshavn Isbrae ice stream, one of the fastest ice streams in the world (Lloyd, 2006) which drains ~6.5% of the Greenland Inland Ice (Weidick and Bennike, 2007).

Material and Methods

Coring sites and core handling

During the HU2008-029 oceanographic campaign in Baffin Bay, four piston cores (cores 034, 038, 042 and 070PC), with their companion trigger weight cores (TWC) and associated box cores (BC), were collected on board the CCGS Hudson (Fig. 1 and Table 1). Cores 034 and 038 were collected in the northern Baffin Bay polynya (Smith Sound). Core 042 was sampled in Jones Sound, whereas core 070 was raised offshore from Disko Bugt, north-west of Outer Egedesminde Dyb (valley) in a probable glacier outlet zone (Weidick and
The coring sites were determined using a Knudsen 3.5-kHz chirp sub-bottom profiler to identify areas of thick apparent Holocene sequences with the absence of mass movements and/or sediment perturbations. Composite depths have been established (see the core top correlation section), and the composite cores (comprising the BC, TWC, and PC records) are referred to as cores 34, 38, 42 and 70 hereafter.

Once on board, the cores were cut into 1.5-m-long sections and split lengthwise. They were then described and sampled with u-channels, rigid u-shaped plastic liners of 1.5 m length and a 2 cm cross-section.

Wet bulk density and low-field volumetric magnetic susceptibility

Wet bulk density and low-field volumetric magnetic susceptibility (k_{LF}) were first measured on board at 1- and 0.5-cm intervals, respectively, on whole piston, trigger weight and box cores using a GEOTEK Multi Sensor Core Logger. k_{LF} was also measured on u-channels in the laboratory at 1-cm intervals using a point sensor. k_{LF} is an indicator of the concentration of ferrimagnetic material and is sensitive to variations in grain size (e.g. Thompson and Oldfield, 1986; Stoner et al., 1996; Dearing, 1999).

Diffuse spectral reflectance

Diffuse spectral reflectance was measured on board using a Minolta CM-2600d spectrophotometer at 0.5-cm intervals for the box and trigger weight cores and at 1-cm intervals for the piston cores. The spectral reflectance data are expressed in the CIE (International Commission on Illumination) L', a', b' color space which is often used in paleoceanography. L' ranges from black to white, a' from green to red, and b' from blue to yellow (e.g. St-Onge et al., 2007). The L', a', b' data are smoothed to enhance the variations.

Grain size

Grain size measurements (0.04–2000 μm) were performed at 10-cm intervals in each core with a Beckman-Coulter LS13320 laser diffraction particle size analyser at ISMER. The top and bottom of each core section were also measured. Prior to the measurements, sediments were added to a Calgon electrolytic solution (sodium hexametaphosphate) and rotated for about 3 h using an in-house rotator. The samples were then sieved (2 mm) and disaggregated in an ultrasonic bath for 90 s before analysis. The particle size distribution output was then processed using the Gradistat software for sediment parameters (Blott and Pye, 2001).
CAT-scan

All core sections were passed through a computerized axial tomography scanner (CAT-Scan) at INRS-ETE in Quebec City to characterize the sedimentary facies and sediment structures (e.g. St-Onge et al., 2007). It was notably used to determine the different sediment units, as well as to identify sediment deformation and shells for radiocarbon dating (see below).

Paleomagnetic analyses

All measurements were made at the Sedimentary Paleomagnetism and Marine Geology Laboratory of ISMER. Paleomagnetic data were measured on the u-channels at 1-cm intervals using a 2G Enterprises SRM-755 u-channel cryogenic magnetometer and pulse magnetizer module for isothermal (IRM) and saturated isothermal remanent magnetizations (SIRM). Because of the response function of the magnetometer (e.g. Weeks et al., 1993; Roberts, 2006), smoothing occurs due to the integration of empty space at the end and beginning of u-channels. The first and the last 4 cm of each section were thus excluded.

The natural remanent magnetization (NRM) was measured and then progressively demagnetized using stepwise peak alternating fields (AFs) up to 80 mT at 5-mT increments. An anhysteretic remanent magnetization (ARM) was then induced using a 100-mT AF with a 0.05-mT direct current (DC) biasing field. The ARM was measured and demagnetized at every 5 mT up to 60 mT, and then at 70, 80, 90 and 100 mT. Two IRMs were imparted with a DC field of 0.3 T (IRM) and 0.95 T (SIRM) using the pulse magnetizer module. Each IRM was demagnetized and measured at peak AF at every 5 mT up to 60 mT, and at 70, 80, 90 and 100 mT. SIRM was demagnetized and measured at 0, 10, 30, 50, 70, 90 and 120 mT.

The median destructive field (MDF$_{ARM}$) of the NRM is also presented. It is the value of the AF necessary to reduce the NRM to half of its initial intensity and was calculated with the software from Mazzaud (2005). MDF values are dependent on the coercivity of magnetic minerals and magnetic grain size, and are a useful parameter in estimating magnetic mineralogy (e.g. Dankers, 1981). The ARM$_{20mT}$/ARM$_{0mT}$ ratio, a coercivity ratio that reflects variations in magnetic grain size if the mineralogy is dominated by low-coercivity minerals such as magnetite (e.g. Andrews et al., 2003) was also calculated.

Additionally, the pseudo-S ratio (IRM$_{10mT}$/SIRM$_{10mT}$) was calculated to estimate the magnetic mineralogy, with values close to 1 indicating a lower coercivity, ferrimagnetic mineralogy (e.g. magnetite), and lower values indicating a higher coercivity mineralogy (e.g. hematite) (Stoner and St-Onge, 2007).

Hysteresis measurements were performed on selected sediment samples in each core using a Princeton Measurement Corporation (Princeton, NJ, USA) Micromag 2900 alternating gradient force magnetometer. Derived from the hysteresis curves, the coercivity of magnetic minerals (Hc), the coercivity of remanence (Hcr), the saturation magnetization (Ms) and the saturation remanence (Mrs) were used to characterize the magnetic mineralogy and grain size (Day et al., 1977).

Radiocarbon dating

The chronologies of the composite sequences of cores 34, 38 and 42 were determined using accelerator mass spectrometry (AMS) 14C measurements at the Keck carbon cycle AMS facility, University of California, Irvine, CA, USA. The measurements on box core 40, which is associated with core 42, were conducted at the Lawrence Livermore National Laboratory, Livermore, CA, USA. Radiocarbon measurements for core 70 samples were done at the NSF-Arizona AMS Facility and the Scottish Universities Environmental Research Centre in the UK (Jennings et al., 2013). Detailed data are presented in Table 2. The ages are reported in radiocarbon years using Libby's half-life of 5568 years and following the convention of Stuiver and Polach (1977). The conversion of conventional 14C ages to calibrated years was done using the CALIB 6.0 online calibration software (Stuiver et al., 2005) and the Hughen et al. (2004) marine dataset. The regional reservoir corrections (ΔR values) used are indicated in Table 2 and based on the online CALIB marine reservoir correction database. The calibrated ages are the median probability reported with a 2σ confidence level.

Core top correlation

Physical and magnetic properties were correlated between the piston cores and their associated trigger weight and box cores to determine the amount of sediment loss during piston coring (Fig. 3). Composite depths were then constructed for each site using the determined sediment loss. Diffuse spectral reflectance (a*) and magnetic susceptibility were used to compare the BC, TWC and PC of core 34. The correlation indicates a gap of 2 cm between the BC and TWC, and 34 cm between the TWC and PC. There is only a 4-cm gap between the BC and TWC of core 38, as shown by the inclination and k$_{c}$ data, whereas a difference of 19 cm between the TWC and PC is indicated by a* and k$_{E}$ data. For core 42, a* values indicate that there was 57 cm of sediments missing at the top of the piston core. Inclination and declination data were used to compare the BC, TWC and PC of core 70. Comparisons show that 15 cm of sediment is missing at the top of the TWC and that there is a difference of 161 cm between the TWC and PC. Comparison of foraminifera assemblages yielded similar results, i.e. 161 cm between TWC and PC (Jennings and Walton, 2010; Jennings et al., 2013). The corrected lengths of all cores are presented in Table 1.

Results

Magnetic mineralogy and grain size

The shape of hysteresis curves of the discrete samples from all cores (Fig. 4) indicate that low-coercivity minerals such as magnetite in the pseudo-single domain (PSD) to multi-domain (MD) ranges are the dominant magnetic carrier (e.g. Tauxe, 2010). Similarly, Day plots (Day et al., 1977) indicate that most of the sediments of the four cores are composed of PSD magnetic grains, except for core 38 which contains coarser MD magnetic grains (Fig. 5B). Mrs/Ms values ranging between 0.1 and 0.3 are characteristic of magnetite/titanomagnetite grains (Day et al., 1977; Tauxe, 1993). Similarly, Hcr/Hc values ranging from 2 to 6 are typical of PSD to MD grain size for magnetite (Dunlop, 2002). Moreover, results from Day plot of cores 34, 42 and 70 follow a mixing line typical of magnetite/titanomagnetite grain size variations (Peters and Dekkers, 2003), whereas more scatter is observed for core 38. The k$_{p}$/SIRM diagram indicates that for most of cores 34, 42 and 70, there is a scattered distribution of magnetic grain sizes, including larger MD grains in cores 34 and 70 (Fig. 5A-C). For core 34, this highlighted interval corresponds to 110–300 cm, but does not include the peak in MDF values between 204 and 181 cm. It is not related to a specific lithofacies, but it can be associated with low (<0.6) ARM$_{20mT}$/ARM$_{10mT}$ values. Regarding core 70, this interval of MD grains ranges from 424 to 310 cm. It is related to a decrease in magnetic parameter values from 390 to 292 cm, and to the presence of coarser sediment in unit 1 (see below;
...the pseudo-S-ratio mean values of 0.89 and 0.95 for cores 34 and 38, respectively, again indicative of a dominance of low-coercivity minerals such as magnetite. However, for core 38, these relatively lower values in conjunction with scattered results on the Day plot (Peters and Dekkers, 2003) may indicate a minor contribution of higher coercivity minerals such as goethite. These relatively low MDF values, in conjunction with pseudo S-ratio mean values of 0.84 and 0.91, respectively, at 0 mT, the ratios are higher with 366 (290–442) for core 34, 6468 (6397–6547) for core 38, 6701 (6635–6773) for core 42, and 8367 (8317–8413) for core 42B, indicating a high proportion of lower coercivity minerals such as magnetite in these sediments.

Stratigraphy, physical and magnetic properties

Core 34

The physical and magnetic properties of core 34 allowed the identification of two distinct stratigraphic units (Fig. 5A). Unit 1, from 715 to 560 cm, is composed of a sequence characterized by two layers of reddish brown sandy mud with pebbles and gravel. The coarser material present in both layers is reflected by higher density and magnetic susceptibility values, and is visible on the CAT-scan images. Two peaks of magnetic susceptibility, with values reaching 200 × 10^{-5} SI, are observed and represent two distinct sub-units: 1a and 1b. The first magnetic susceptibility peak in sub-unit 1a, around 615 cm, is coeval with the presence of few pebbles. The second sub-unit (1b: 715–640 cm), highlighted by a peak in LSI values, is...
S1 and S2). Note that all the properties of this unit are constrained in the same range of values as sub-units 2a, 2b and 2c of core 34, possibly indicating a similar source and mode of deposition.

The second unit, from 505 cm to top of the unit, is characterized by the absence of significant traces of bioturbation or color changes and constant parameters. Sub-units a and c are very similar. Sub-unit 2b contains some pebbles and shell fragments. Higher values of magnetic susceptibility, from 280 to 180 cm, are apparent and reach a maximum of 52/10^5 SI. The higher density and coarser physical grain size observed in this sub-unit, in conjunction with lower values of ARM_{cont}/ARM_{ont}, indicate a coarser magnetic grain size (e.g. Andrews et al., 2003; Stoner and St-Onge, 2007) as no significant change in magnetic mineralogy can be deduced from the hysteresis loops and IRM/SIRM ratio (Figs 4 and 5).

Core 42

Most of core 42 is composed of olive-grey (5Y4/2) and dark olive-grey (5Y3/2) silty clays with a gradual color change to very dark brown (10YR2/2) starting at 980 cm. Two stratigraphic units were defined.

Figure 3. Core top correlation for cores (A) 32BC, 34TWC and 34PC, (B) 40BC and 42PC, (C) 36BC, 38TWC and 38PC, and (D) 68BC, 70TWC and 70PC. Open delta symbol represents the difference between each core. Colors illustrate the different sections. This figure is available in colour online at wileyonlinelibrary.com.
Figure 4. Downcore variations of the MDF, pseudo S-ratio and magnetic grain size indicator SIRM versus k_{LF} for cores (A) 34, (B) 38, (C) 42 and (D) 70. The magnetic grain size measurements are also represented in a Day plot (Day et al., 1977) with their associated hysteresis curves. The arrows indicate where the u-channels were subsampled for the alternating gradient force magnetometer (AGM) measurements. The raw (red) and high-field slope corrected (black) magnetizations are illustrated. Red dots in the Day plots are associated with MD grains. MD, multi-domain; PSD, pseudo-single domain. The magnetic grain size trending lines in the k_{LF} vs SIRM diagrams are from Thompson and Oldfield, 1986. This figure is available in colour online at wileyonlinelibrary.com.
Unit 1 is observed from 1087 to 835 cm. It is defined by a significant color change from the base to the top of the unit, passing from a /C3 values of +2 to 0. The succession of peaks in magnetic susceptibility, NRM, ARM and IRM profiles indicates that deposition occurred in several steps. Peaks observed only in magnetic susceptibility data at 1080, 1000 and 845 cm are associated with large pebbles that were not sampled in u-channels, but measured on the whole core analysis. High magnetic susceptibility, NRM, ARM and IRM values between 950 and 880 cm are related to small pebbles present in the u-channels.

The unit has been divided in two sub-units. Sub-unit 1a, from 1087 to 1068 cm, is composed of compact clay with large pebbles. Sub-unit 1b, from 1068 to 835 cm, is characterized by the presence of numerous pebbles in a very dark brown silty clay with layers of sandy mud. There are a few
intervals with laminations and normal grading that we interpret as turbidites (also see the CAT-scan images in supporting Figs S1 and S2).

Unit 2, from 835 cm to the top of the core, is composed of very homogeneous and strongly bioturbated olive-grey (5Y4/2) and dark olive-grey (5Y3/2) silty clays. Shell fragments are present at 110 and 80 cm. The sub-units were determined using major changes in the MDF profile. Sub-unit 2a has higher MDF values than sub-unit b, with values ranging from 28 to 14 mT and a decrease starting at 480 cm. Sub-unit c, from 105 to 63 cm, is characterized by relatively higher MDF values with values ranging from 17 and 32 mT.

Core 70

Three units were defined in core 70 (Fig. 5D). The first unit, from 417 to 375 cm, is composed of very dark gray (5Y3/2) sands and contains numerous pebbles and shell fragments.

Figure 5. (Continued)
is associated with a peak in density, mean grain size and magnetic susceptibility. Similarly, very low MDF and ARM$_{20mT}$/ARM$_{0mT}$ values probably suggest a coarser magnetic grain size (e.g. Andrews et al., 2003; Stoner and St-Onge, 2007), as the hysteresis data reveal a MD magnetic grain size (Fig. 4D).

Unit 2 is observed from 375 to 175 cm. It is characterized by olive (5Y 4/3) and dark olive gray (5Y3/2) silty clays and by relatively high magnetic property values, with magnetic susceptibility reaching values around 200 \times 10$^{-5}$ SI. Sub-unit 2b is a transitional unit to unit 3, with some traces of bioturbation. Toward its top, at 182 cm, there are a few laminations, whereas at the bottom of sub-unit 2a, a few pebbles are observed.

Unit 3 is a homogeneous olive-gray (5Y4/2) silty clay unit with a few traces of bioturbation. From 70 to 60 cm, an interval of higher density is observed on the CAT-scan image. This interval is also characterized by normal grading and an increase in magnetic susceptibility values (max: 140 \times 10$^{-5}$ SI). We interpret this layer as a turbidite. From 45 cm to the top of the core, an increase in a’, L’ and ARM$_{20mT}$/ARM$_{0mT}$ is observed.

Chronology

The four radiocarbon-based age models are presented in Fig. 6. Because the four cores have different sedimentation rates and different distributions of 14C ages, four different methods have been used to establish the age models. The age model for core 34 was constructed with a linear interpolation between available ages. There are two different sedimentation rates: 76 cm ka$^{-1}$ from the base to 4000 cal a BP and 46 cm ka$^{-1}$ from 4000 cal a BP to the top of the sequence. The age model for core 38 was constructed using a linear interpolation for the top of the core and a fifth degree polynomial fit for the rest of the core, where several 14C ages were available. The sedimentation rate is 136 cm ka$^{-1}$ for the base of the core, 31 cm ka$^{-1}$ from 2000 to 4000 cal a BP, and 85 cm ka$^{-1}$ for the top of the core. For core 42, the age model was constructed with a simple linear interpolation between all of the calibrated 14C ages. The mean sedimentation rate is 46 cm ka$^{-1}$. Finally, for core 70, due to the presence of several 14C ages, a fifth degree polynomial fit was established from the base of the core to the uppermost 14C age.
There are two different sedimentation rates for this part of the core: 75 cm ka\(^{-1}\) for the base of the core and 20 cm ka\(^{-1}\) from \(-9000\) to \(-3000\) cal a BP. The top of the age model was constructed using a linear relationship between the first two ages, yielding a sedimentation rate of 32 cm ka\(^{-1}\).

Chronostratigraphic Units and Environmental Changes in Baffin Bay During the Holocene

Chronostratigraphic unit I (12 300–11 300 cal a BP)

Based on the identification and the characteristics of the lithological units observed in each core (Fig. 7), as well as the
age models, common chronostratigraphic units can be identified between the different cores. The first chronostratigraphic unit (I) is only present in core 70 and is mostly composed of coarse material. It is dated from 12 300 to 11 300 cal a BP. This period corresponds to the transition from the Younger Dryas to the Holocene (12 800–11 700 cal a BP, Funder et al., 2011) and was probably characterized by a significant influx of meltwater (Weidick and Bennike, 2007), as suggested by the sand content, while the presence of pebbles in this facies indicates the passage of icebergs (Stein, 2008). It is interpreted as an ice-proximal glaciomarine sedimentary unit.

According to Ó Cofaigh et al. (2013), the limit of the ice margin during the Younger Dryas was at the Fiskebank moraines system, to the east of the sampling site of core 70. But their results show evidence of a glacier outlet in the Outer Egedesminde Dyb, which covered the site of core 70 during the Younger Dryas. The exact timing of the retreat is undated, but Ó Cofaigh et al. (2013) determined 12 400 cal a
BP as a maximum age of deglaciation for the outer-shelf trough, which is coherent with the onset of unit 1.

Chronostratigraphic unit II [11 300 to (9400–~8500) cal a BP]

The second chronostratigraphic unit (II) is present in all cores except core 38 and corresponds mostly to stratigraphic unit 1 for cores 34 and 42, and unit 2a of core 70 (Fig. 5). The presence of pebbles and/or turbidites in the sediment, associated with high magnetic susceptibility values, is an indicator of extensive sea-ice cover or icebergs. In core 34, this unit is characterized by a pronounced red color (a') associated with lower magnetic remanence values, which reflects the presence of hematite probably transported by glaciers from the Thule Basin (Dawes, 2006).

Moreover, in core 42, the presence of numerous pebbles, sandy mud layers and brownish turbidites in this unit can be linked to large terrigenous inputs from the final collapse of the Innuitian Ice Sheet in the Canadian Arctic Archipelago (Ledu et al., 2010), followed by melting of the Innuitian Ice Sheet on Devon and Ellesmere Islands (England et al., 2006). This unit, interpreted as a diamicton, thus corresponds to the transition from deglaciation to the Holocene Thermal Optimum.

Chronostratigraphic unit III [9400–~8500] to (5500–5250) cal a BP

Chronostratigraphic unit III is present in all cores up to 5500–5250 cal a BP. The unit is associated with stratigraphic unit 1 for core 38 and unit 2 for the other cores. It is characterized by strongly bioturbated silty clays with shells and shell fragments, which suggest a hemipelagic mode of deposition and oceanographic conditions favorable for marine productivity. This corresponds to the Holocene Thermal Optimum for the studied area (Koç and Jansen, 2002; Weidick and Bennike, 2007; Ledu et al., 2010; Jennings et al., 2011). For all cores, the homogeneous fine sediment is interpreted to have a hemipelagic origin, where sedimentation occurred mainly by suspension. This unit shares similarities with a 112-cm layer of highly bioturbated mud described by Jennings et al. (2011) in a core from Nares Strait. According to Jennings et al. (2011), based on the pervasive bioturbation, as well as the benthic and planktonic foraminifera assemblages, there was high marine productivity between 8926 and 6050 cal a BP in northern Baffin Bay, which is consistent with our results for this unit.

In core 42, the sediments in chronostratigraphic unit III present higher MDF values, which can probably be explained by a finer magnetic grain size as major changes in mineralogy were not recorded by the IRM/SIRM ratio and hysteresis parameters. The MDF profile of the entire core is almost identical to the variations of key paleoceanographic proxies of core HLY03-05GC (Jennings et al., 2011) from Nares Strait (Fig. 8). The relationship between the δ18O and δ13C records and MDF is not exactly known, but in previous studies, some links have been established between the dilution of terrigenous material with biogenic sediments and changes in magnetic mineralogy (Brachfeld and Banerjee, 2000; Brachfeld, 2006). In this case, the link between MDF, δ18O and δ13C records probably occurs due to the influence of meltwater and the proximity of ice. The meltwater episode before the opening of Nares Strait is associated with warmer surface conditions (δ18O), low marine productivity (δ13C) (Jennings et al., 2011) and coarser terrigenous material (lower MDF values). The Holocene Climatic Optimum is then characterized by the occurrence of finer sediment due to hemipelagic sedimentation, which results in higher MDF values and high marine productivity (δ13C). Similarly, the kAIRM versus kIF diagram (Banerjee et al., 1981; King et al., 1982) indicates finer magnetic grains during this time interval. The kAIRM versus kIF diagram (Banerjee et al., 1981; King et al., 1982) has established that the magnetic grain size was finest during the Holocene Climatic Optimum (Fig. 9) even though the values from this diagram should not be taken as absolute values for several reasons, namely that the diagram is based on laboratory assemblages rather than natural magnetite samples (King et al., 1982), and that the ARM depends on the experimental process by which the remanence is imparted (Sagnotti et al., 2003).

For core 70, the onset of this chronostratigraphic unit is concomitant with the establishment of the WGC in the bay between 9200 and 7800 cal a BP (Lloyd et al., 2005). The increase in sea surface temperatures for the south-eastern part of Baffin Bay during the thermal maximum is caused by the influence of the WGC on meltwater from the Jakobshavn Isbrae ice stream and local glaciers from Disko Island (Lloyd et al., 2005; Kelly and Lowell, 2009). The transition in the sedimentation rates is around 8800 cal a BP (Fig. 6).

Figure 10 illustrates the comparison between the density and kIF profiles and two temperature profiles from the Greenland Ice Core Project (CIP) borehole (Dahl-Jensen et al., 1998), as well as a compilation from ice-core records in Greenland (Weidick and Bennike, 2007). Overall, this correlation can be explained by the fact that variations in
continental temperatures directly affect the presence, or absence, of meltwater and sea ice inputs in Disko Bay, and thereby the density and magnetic susceptibility of the sediment.

Chronostratigraphic unit IV (5500–5250 cal a BP to present)
The most recent chronostratigraphic unit (IV) mostly corresponds to lithostratigraphic units 2 and 3. The unit is characterized by a slight augmentation in mean grain size. A similar increase was also observed in a core (012P) from Smith Sound (Knudsen et al., 2008) and interpreted as an increase in Arctic bottom currents during this period (Knudsen et al., 2008). However, this slight increase is not associated with an increase in magnetic susceptibility, which normally occurs with a contribution of terrigenous material (Andrews and Jennings, 1987, 1990; Stoner et al., 1996).

Unit IV contains significantly less traces of bioturbation than the underlying unit, which could be an indication of colder conditions. In addition, in core 38 a major peak in \(k_{LF} \) at 3300 a cal BP is caused by the presence of pebbles, which probably indicates deposition by iceberg calving and thus supports a cold event in the area. This event was also identified by Wanner et al. (2011) and Bond et al. (1997) between 3300 and 2500 cal a BP and at 2800 cal a BP, respectively, in the North Atlantic. A cool and unstable environment from 3050 to 2550 cal a BP was also observed by Knudsen et al. (2008) in a core (008P) located near core 38 in Smith Sound.

Core 70 contains a 10-cm-thick turbidite at \(/C24 \) 1885 cal a BP (Fig. 7D). This turbidite could have been deposited following an intense episode of iceberg rafting, determined by Andresen et al. (2010) to have occurred in Disko Bugt at 2100 cal a BP. This may have been triggered by the onset of the Roman Warm Period in Europe (Perner et al., 2011), which followed a period of colder conditions from 3600 to 1900 cal a BP (Perner et al., 2011). Following these colder conditions, a warmer WGC was observed which would have caused an increase in meltwater outflow and iceberg calving (Lloyd et al., 2005; Moros et al., 2006; Andresen et al., 2010).

Conclusions
The main chronostratigraphic units from the four cores reflect major Holocene environmental changes in Baffin Bay. Variations in magnetic grain size and concentration, as well as
changes in physical properties such as grain size, color and density, are indicative of environmental changes. Cores 34, 42 and 70 recorded the transition from the Younger Dryas to the Holocene, marked by the presence of diamictic, ice-rafter debris and turbidites, as well as the Holocene Climatic Optimum, indicated by very fine hemipelagic and highly bioturbated sediment. The MD$_{HF}$, signal of core 42, as well as density and k_{Fe} for core 70, are good proxies of environmental changes as they are related to changes in grain size. Finally, signatures of local events were identified during the Neoglacial period. Indeed, core 38 from northern Baffin Bay has a specific signal of ice-rafter debris and coarse grains marking a cold event from 2500 to 3300 cal BP, while core 70 contains a turbidite dated at ~1885 cal BP that is probably associated with local iceberg calving generated by warmer WGC waters at that time (Moros et al., 2006; Andrensen et al., 2010; Perner et al., 2011). These data show overall paleoceanographic variations in Baffin Bay during the Holocene and some local climatic events during the Neoglacial period.

Supporting Information

Additional supporting information can be found in the online version of this article:

Figure S1. Background_dataset_cores34_38.
Figure S2. Background_dataset_cores42_70.

Acknowledgements. We are grateful to the captain, officers, crew and scientists on board the CCGS Hudson during the 2008-029 expedition, funded by the Geological Survey of Canada and the Natural Sciences and Engineering Research Council of Canada (NSERC). This study was supported by the Fonds Québécois de recherche en Nature et Technologies, NSERC, the Economic Development, Innovation and Export Trade Ministry of Quebec (Canadian contribution to the Past4Future project) and the Canadian Foundation for Climate and Atmospheric Sciences (CFCAS). We thank Nicolas Van Nieuenhove and two anonymous reviewers for their thorough reviews and helpful comments. We also sincerely thank Anne Jennings (INSTAAR) for sharing the 14C dates of core 70 and for commenting on a preliminary version of the manuscript. We also thank Joseph Ortiz (Kent State University) for the diffuse spectral reflectance measurements.

Abbreviations. AF, alternating field; AMS, accelerator mass spectrometry; ARM, anhysteretic remanent magnetization; BC, box core; DC, direct current; Hc, coercivity; Hcr, coercivity of remanence; IRM, isothermal remanent magnetization; MD, multi-domain; MDF, median destructive field; Mrs, saturation remanence; Ms, saturation magnetization; NRM, natural remanent magnetization; PC, piston core; PSD, pseudo-single-domain; SIRM, saturated isothermal remanent magnetization; TWC, trigger weight core; WGC, West Greenland Current.

References

Lloyd JM. 2006. Late Holocene environmental change in DiskoBugt, west Greenland: interaction between climate, ocean circulation and Jakobshavnisbrae. Boreas 35: 35–49.

